File size: 7,825 Bytes
26ce2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import copy

import torch
import numpy as np

from liegroups.torch import SO2, utils


def test_from_matrix():
    C_good = SO2.from_matrix(torch.eye(2))
    assert isinstance(C_good, SO2) \
        and C_good.mat.dim() == 2 \
        and C_good.mat.shape == (2, 2) \
        and SO2.is_valid_matrix(C_good.mat).all()

    C_bad = SO2.from_matrix(torch.eye(2).add_(1e-3), normalize=True)
    assert isinstance(C_bad, SO2) \
        and C_bad.mat.dim() == 2 \
        and C_bad.mat.shape == (2, 2) \
        and SO2.is_valid_matrix(C_bad.mat).all()


def test_from_matrix_batch():
    C_good = SO2.from_matrix(torch.eye(2).repeat(5, 1, 1))
    assert isinstance(C_good, SO2) \
        and C_good.mat.dim() == 3 \
        and C_good.mat.shape == (5, 2, 2) \
        and SO2.is_valid_matrix(C_good.mat).all()

    C_bad = copy.deepcopy(C_good.mat)
    C_bad[3].add_(0.1)
    C_bad = SO2.from_matrix(C_bad, normalize=True)
    assert isinstance(C_bad, SO2) \
        and C_bad.mat.dim() == 3 \
        and C_bad.mat.shape == (5, 2, 2) \
        and SO2.is_valid_matrix(C_bad.mat).all()


def test_identity():
    C = SO2.identity()
    assert isinstance(C, SO2) \
        and C.mat.dim() == 2 \
        and C.mat.shape == (2, 2)


def test_identity_batch():
    C = SO2.identity(5)
    assert isinstance(C, SO2) \
        and C.mat.dim() == 3 \
        and C.mat.shape == (5, 2, 2)

    C_copy = SO2.identity(5, copy=True)
    assert isinstance(C_copy, SO2) \
        and C_copy.mat.dim() == 3 \
        and C_copy.mat.shape == (5, 2, 2)


def test_from_angle_to_angle():
    angle = torch.Tensor([np.pi / 2.])
    assert utils.allclose(SO2.from_angle(angle).to_angle(), angle)


def test_from_angle_to_angle_batch():
    angles = torch.Tensor([-1., 0, 1.])
    assert utils.allclose(SO2.from_angle(angles).to_angle(), angles)


def test_dot():
    C = SO2(torch.Tensor([[0, -1],
                          [1, 0]]))
    pt = torch.Tensor([1, 2])

    CC = C.mat.mm(C.mat)
    assert utils.allclose(C.dot(C).mat, CC)

    Cpt = C.mat.matmul(pt)
    assert utils.allclose(C.dot(pt), Cpt)


def test_dot_batch():
    C1 = SO2(torch.Tensor([[0, -1],
                           [1, 0]]).expand(5, 2, 2))
    C2 = SO2(torch.Tensor([[-1, 0],
                           [0, -1]]))
    pt1 = torch.Tensor([1, 2])
    pt2 = torch.Tensor([4, 5])
    pt3 = torch.Tensor([7, 8])
    pts = torch.cat([pt1.unsqueeze(dim=0),
                     pt2.unsqueeze(dim=0),
                     pt3.unsqueeze(dim=0)], dim=0)  # 3x2
    ptsbatch = pts.unsqueeze(dim=0).expand(5, 3, 2)

    C1C1 = torch.bmm(C1.mat, C1.mat)
    C1C1_SO2 = C1.dot(C1).mat
    assert C1C1_SO2.shape == C1.mat.shape and utils.allclose(C1C1_SO2, C1C1)

    C1C2 = torch.matmul(C1.mat, C2.mat)
    C1C2_SO2 = C1.dot(C2).mat
    assert C1C2_SO2.shape == C1.mat.shape and utils.allclose(C1C2_SO2, C1C2)

    C1pt1 = torch.matmul(C1.mat, pt1)
    C1pt1_SO2 = C1.dot(pt1)
    assert C1pt1_SO2.shape == (C1.mat.shape[0], pt1.shape[0]) \
        and utils.allclose(C1pt1_SO2, C1pt1)

    C1pt2 = torch.matmul(C1.mat, pt2)
    C1pt2_SO2 = C1.dot(pt2)
    assert C1pt2_SO2.shape == (C1.mat.shape[0], pt2.shape[0]) \
        and utils.allclose(C1pt2_SO2, C1pt2)

    C1pts = torch.matmul(C1.mat, pts.transpose(1, 0)).transpose(2, 1)
    C1pts_SO2 = C1.dot(pts)
    assert C1pts_SO2.shape == (C1.mat.shape[0], pts.shape[0], pts.shape[1]) \
        and utils.allclose(C1pts_SO2, C1pts) \
        and utils.allclose(C1pt1, C1pts[:, 0, :]) \
        and utils.allclose(C1pt2, C1pts[:, 1, :])

    C1ptsbatch = torch.bmm(C1.mat, ptsbatch.transpose(2, 1)).transpose(2, 1)
    C1ptsbatch_SO2 = C1.dot(ptsbatch)
    assert C1ptsbatch_SO2.shape == ptsbatch.shape \
        and utils.allclose(C1ptsbatch_SO2, C1ptsbatch) \
        and utils.allclose(C1pt1, C1ptsbatch[:, 0, :]) \
        and utils.allclose(C1pt2, C1ptsbatch[:, 1, :])

    C2ptsbatch = torch.matmul(C2.mat, ptsbatch.transpose(2, 1)).transpose(2, 1)
    C2ptsbatch_SO2 = C2.dot(ptsbatch)
    assert C2ptsbatch_SO2.shape == ptsbatch.shape \
        and utils.allclose(C2ptsbatch_SO2, C2ptsbatch) \
        and utils.allclose(C2.dot(pt1), C2ptsbatch[:, 0, :]) \
        and utils.allclose(C2.dot(pt2), C2ptsbatch[:, 1, :])


def test_wedge():
    phi = torch.Tensor([1])
    Phi = SO2.wedge(phi)
    assert (Phi == -Phi.t()).all()


def test_wedge_batch():
    phis = torch.Tensor([1, 2])
    Phis = SO2.wedge(phis)
    assert (Phis[0, :, :] == SO2.wedge(torch.Tensor([phis[0]]))).all()
    assert (Phis[1, :, :] == SO2.wedge(torch.Tensor([phis[1]]))).all()


def test_wedge_vee():
    phi = torch.Tensor([1])
    Phi = SO2.wedge(phi)
    assert (phi == SO2.vee(Phi)).all()


def test_wedge_vee_batch():
    phis = torch.Tensor([1, 2])
    Phis = SO2.wedge(phis)
    assert (phis == SO2.vee(Phis)).all()


def test_left_jacobians():
    phi_small = torch.Tensor([0.])
    phi_big = torch.Tensor([np.pi / 2])

    left_jacobian_small = SO2.left_jacobian(phi_small)
    inv_left_jacobian_small = SO2.inv_left_jacobian(phi_small)
    assert utils.allclose(
        torch.mm(left_jacobian_small, inv_left_jacobian_small),
        torch.eye(2))

    left_jacobian_big = SO2.left_jacobian(phi_big)
    inv_left_jacobian_big = SO2.inv_left_jacobian(phi_big)
    assert utils.allclose(
        torch.mm(left_jacobian_big, inv_left_jacobian_big),
        torch.eye(2))


def test_left_jacobians_batch():
    phis = torch.Tensor([0., np.pi / 2])

    left_jacobian = SO2.left_jacobian(phis)
    inv_left_jacobian = SO2.inv_left_jacobian(phis)
    assert utils.allclose(torch.bmm(left_jacobian, inv_left_jacobian),
                          torch.eye(2).unsqueeze_(dim=0).expand(2, 2, 2))


def test_exp_log():
    C_big = SO2.exp(torch.Tensor([np.pi / 4]))
    assert utils.allclose(SO2.exp(SO2.log(C_big)).mat, C_big.mat)

    C_small = SO2.exp(torch.Tensor([0]))
    assert utils.allclose(SO2.exp(SO2.log(C_small)).mat, C_small.mat)


def test_exp_log_batch():
    C = SO2.exp(torch.Tensor([-1., 0., 1.]))
    assert utils.allclose(SO2.exp(SO2.log(C)).mat, C.mat)


def test_perturb():
    C = SO2.exp(torch.Tensor([np.pi / 4]))
    C_copy = copy.deepcopy(C)
    phi = torch.Tensor([0.1])
    C.perturb(phi)
    assert utils.allclose(
        C.as_matrix(), (SO2.exp(phi).dot(C_copy)).as_matrix())


def test_perturb_batch():
    C = SO2.exp(torch.Tensor([-1., 0., 1.]))
    C_copy1 = copy.deepcopy(C)
    C_copy2 = copy.deepcopy(C)

    phi = torch.Tensor([0.1])
    C_copy1.perturb(phi)
    assert utils.allclose(C_copy1.as_matrix(),
                          (SO2.exp(phi).dot(C)).as_matrix())

    phis = torch.Tensor([0.1, 0.2, 0.3])
    C_copy2.perturb(phis)
    assert utils.allclose(C_copy2.as_matrix(),
                          (SO2.exp(phis).dot(C)).as_matrix())


def test_normalize():
    C = SO2.exp(torch.Tensor([np.pi / 4]))
    C.mat.add_(0.1)
    C.normalize()
    assert SO2.is_valid_matrix(C.mat).all()


def test_normalize_batch():
    C = SO2.exp(torch.Tensor([-1., 0., 1.]))
    assert SO2.is_valid_matrix(C.mat).all()

    C.mat.add_(0.1)
    assert (SO2.is_valid_matrix(C.mat) == torch.ByteTensor([0, 0, 0])).all()

    C.normalize(inds=[0, 2])
    assert (SO2.is_valid_matrix(C.mat) == torch.ByteTensor([1, 0, 1])).all()

    C.normalize()
    assert SO2.is_valid_matrix(C.mat).all()


def test_inv():
    C = SO2.exp(torch.Tensor([np.pi / 4]))
    assert utils.allclose(C.dot(C.inv()).mat, SO2.identity().mat)


def test_inv_batch():
    C = SO2.exp(torch.Tensor([-1., 0., 1.]))
    assert utils.allclose(C.dot(C.inv()).mat, SO2.identity(C.mat.shape[0]).mat)


def test_adjoint():
    C = SO2.exp(torch.Tensor([np.pi / 4]))
    assert (C.adjoint() == torch.Tensor([1.])).all()


def test_adjoint_batch():
    C = SO2.exp(torch.Tensor([-1., 0., 1.]))
    assert (C.adjoint() == torch.ones(C.mat.shape[0])).all()