File size: 11,157 Bytes
26ce2a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
import json
import copy
import shutil
import argparse
import numpy as np
import sys
import torch
from sparseags.mesh_utils.mesh_renderer import Renderer
from sparseags.render_utils.util import render_and_compare, align_to_mesh
from sparseags.visual_utils import vis_output
def seed_everything(seed):
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def do_reconstruction(cur_dir, out_dir, args, force_all_views=False):
# first stage
if not os.path.exists(os.path.join(cur_dir, f'{args.category}_mesh.{args.mesh_format}')):
os.system(f'python sparseags/main_stage1.py '
f'--config configs/{args.config} '
f'camera_path={cur_dir}/cameras.json '
f'outdir=./ '
f'save_path={cur_dir}/{args.category} '
f'opt_cam=1 sh_degree=3 '
f'num_pts={args.num_pts} '
f'all_views={force_all_views} '
f'mesh_format={args.mesh_format}')
# second stage
if not os.path.exists(os.path.join(cur_dir, f'{args.category}.{args.mesh_format}')):
os.system(f'python sparseags/main_stage2.py '
f'--config configs/{args.config} '
f'camera_path={cur_dir}/cameras_updated.json '
f'outdir=./ '
f'save_path={cur_dir}/{args.category} '
f'all_views={force_all_views} '
f'mesh_format={args.mesh_format}')
# export video
mesh_path = os.path.join(cur_dir, f'{args.category}.{args.mesh_format}')
if not os.path.exists(os.path.join(cur_dir, f'{args.category}.mp4')):
os.system(f'python -m kiui.render {mesh_path} '
f'--save_video {cur_dir}/{args.category}.mp4 '
f'--wogui '
f'--elevation -30')
def read_updated_cameras(cur_dir):
camera_path = os.path.join(cur_dir, 'cameras_updated.json')
with open(camera_path, 'r') as f:
camera_data = json.load(f)
return camera_data
def save_updated_cameras(camera_data, cur_dir):
camera_path = os.path.join(cur_dir, 'cameras.json')
with open(camera_path, 'w') as f:
json.dump(camera_data, f, indent=4)
def save_metrics(metrics_track, out_dir):
metrics_path = os.path.join(out_dir, 'metrics.json')
with open(metrics_path, 'w') as f:
json.dump(metrics_track, f, indent=4)
def main(args):
CATEGORY = args.category
NUM_VIEWS = args.num_views
src_dir = os.path.join('data/demo', CATEGORY)
out_dir = os.path.join(args.output, CATEGORY)
os.makedirs(out_dir, exist_ok=True)
source_camera_path = os.path.join(src_dir, "cameras.json")
print(f'======== processing {src_dir} ========')
if not os.path.exists(source_camera_path):
print(f'{source_camera_path} is missing!')
sys.exit()
stop = 0 # the flag for stopping the loop
stop_with_lower_quality = 0 # the flag for stopping as the reconstruction quality drops
stop_with_full_iters = 0 # the flag for stopping as we reach the maximum loop number
cnt = 0
# pretty empirical choice of maximum iteration number
if NUM_VIEWS <= 5:
MAX_CNT = 1
elif NUM_VIEWS < 8:
MAX_CNT = NUM_VIEWS - 4
else:
MAX_CNT = 4
if not args.enable_loop:
MAX_CNT = 0
THRESHOLD_LPIPS = 0.05
metrics_track = {}
cur_dir = os.path.join(out_dir, f'round_{cnt}')
os.makedirs(cur_dir, exist_ok=True)
shutil.copy2(source_camera_path, os.path.join(cur_dir, 'cameras.json'))
while not stop:
metrics_track[cnt] = []
do_reconstruction(cur_dir, out_dir, args)
camera_data = read_updated_cameras(cur_dir)
lpips_losses, mse_losses = vis_output(
camera_data,
mesh_path=os.path.join(cur_dir, f'{CATEGORY}.{args.mesh_format}'),
save_path=os.path.join(cur_dir, 'vis.png'),
num_views=NUM_VIEWS
)
flags = np.array([int(v["flag"]) for k, v in camera_data.items()])
mean_lpips = np.sum(lpips_losses * flags) / flags.sum()
mean_mse = np.sum(mse_losses * flags) / flags.sum()
metrics_track[cnt].append(mean_lpips)
# 0: go to the next iter
# 1-MAX_CNT: stop if no improvement compared to the last iter
if cnt != 0 and args.enable_loop:
last_lpips = mean_lpips_wo_max
diff_lpips = abs(last_lpips - mean_lpips)
if mean_lpips > last_lpips or diff_lpips < THRESHOLD_LPIPS:
stop_with_lower_quality = 1
if cnt >= MAX_CNT:
stop_with_full_iters = 1
if stop_with_full_iters or stop_with_lower_quality:
stop = 1
cnt_to_stop = cnt - 1 if stop_with_lower_quality else cnt
camera_path_to_be_copied = os.path.join(out_dir, f'round_{cnt_to_stop}', 'cameras_updated.json')
shutil.copy2(camera_path_to_be_copied, os.path.join(out_dir, 'cameras_outlier_removal.json'))
save_metrics(metrics_track, out_dir)
elif not args.enable_loop:
stop = 1
cnt_to_stop = 0
save_metrics(metrics_track, out_dir)
# should not stop, go to the next round
else:
max_lpips_value = -float('inf')
max_index = -1
for i in range(NUM_VIEWS):
if flags[i] == 1 and lpips_losses[i] > max_lpips_value:
max_lpips_value = lpips_losses[i]
max_index = i
flags[max_index] = 0
mean_lpips_wo_max = np.sum(lpips_losses * flags) / flags.sum()
metrics_track[cnt].append(mean_lpips_wo_max)
assert camera_data[list(camera_data.keys())[max_index]]["flag"] == 1
camera_data[list(camera_data.keys())[max_index]]["flag"] = 0
cnt += 1
cur_dir = os.path.join(out_dir, f'round_{cnt}')
os.makedirs(cur_dir, exist_ok=True)
# copy-paste the camera poses for next iter
save_updated_cameras(camera_data, cur_dir)
if cnt_to_stop == 0:
pass
else:
"""If we identified outliers, do render-and-compare to correct them"""
camera_path_outlier_removal = os.path.join(out_dir, 'cameras_outlier_removal.json')
assert os.path.exists(camera_path_outlier_removal)
with open(camera_path_outlier_removal, 'r') as f:
camera_data_outlier_removal = json.load(f)
camera_path_render_and_compare = os.path.join(out_dir, 'cameras_render_and_compare.json')
if not os.path.exists(camera_path_render_and_compare):
mesh_path = os.path.join(out_dir, f'round_{cnt_to_stop}', f'{CATEGORY}.{args.mesh_format}')
camera_data_render_and_compare = render_and_compare(copy.deepcopy(camera_data_outlier_removal), mesh_path, out_dir, num_views=NUM_VIEWS)
with open(camera_path_render_and_compare, 'w') as f:
json.dump(camera_data_render_and_compare, f, indent=4)
# (1) check the recovered cameras from render-and-compare: we do reconstruction to align everything together
cur_dir = os.path.join(out_dir, f'check_recovered_poses')
os.makedirs(cur_dir, exist_ok=True)
shutil.copy2(camera_path_render_and_compare, os.path.join(cur_dir, 'cameras.json'))
do_reconstruction(cur_dir, out_dir, args, force_all_views=True)
camera_data = read_updated_cameras(cur_dir)
lpips_losses, mse_losses = vis_output(
camera_data,
mesh_path=os.path.join(cur_dir, f'{CATEGORY}.{args.mesh_format}'),
save_path=os.path.join(cur_dir, 'vis.png'),
num_views=args.num_views
)
# (2) re-consider initial cameras: we fix the updated inliers while aligning the outliers to the 3D from inliers
cur_dir = os.path.join(out_dir, f'reconsider_init_poses')
os.makedirs(cur_dir, exist_ok=True)
mesh_path = os.path.join(out_dir, f'round_{cnt_to_stop}', f'{CATEGORY}.{args.mesh_format}')
camera_data_aligned = align_to_mesh(camera_data_outlier_removal, mesh_path, cur_dir, num_views=NUM_VIEWS)
save_updated_cameras(camera_data_aligned, cur_dir)
# we do reconstruction to align everything together
do_reconstruction(cur_dir, out_dir, args, force_all_views=True)
camera_data_init = read_updated_cameras(cur_dir)
lpips_losses_init, mse_losses_init = vis_output(
camera_data_init,
mesh_path=os.path.join(cur_dir, f'{CATEGORY}.{args.mesh_format}'),
save_path=os.path.join(cur_dir, 'vis.png'),
num_views=NUM_VIEWS
)
flags_sum = np.array([int(v["flag"]) for k, v in camera_data_outlier_removal.items()]).sum()
cnt_valid_cameras = 0
keep_init_poses = False
if lpips_losses.mean() > lpips_losses_init.mean():
keep_init_poses = True # Keep optimized initial poses
else:
for idx, (k, v) in enumerate(camera_data_outlier_removal.items()):
if int(v["flag"]) == 1:
continue
if lpips_losses[idx] < lpips_losses_init[idx] and mse_losses[idx] < mse_losses_init[idx]:
cnt_valid_cameras += 1
# camera_data_init_updated[k] = camera_data[k] # replace the initial poses with recovered poses
if cnt_valid_cameras + flags_sum == NUM_VIEWS:
keep_init_poses = False
else:
keep_init_poses = True
output_path = os.path.join(out_dir, 'cameras_final.json')
if keep_init_poses:
print("Keep the (optimized) initial camera poses.")
with open(output_path.replace(".json", "_init.json"), 'w') as f:
json.dump(camera_data_init, f, indent=4)
else:
print("Replace the initial cameras with the recovered ones!")
with open(output_path.replace(".json", "_recovered.json"), 'w') as f:
json.dump(camera_data, f, indent=4)
if __name__ == "__main__":
seed_everything(0)
parser = argparse.ArgumentParser()
parser.add_argument('--output', default='output/demo', type=str, help='Directory where obj files will be saved')
parser.add_argument('--category', default='jordan', type=str, help='Directory where obj files will be saved')
parser.add_argument('--num_pts', default=25000, type=int, help='Number of points at initialization')
parser.add_argument('--num_views', default=8, type=int, help='Number of input images')
parser.add_argument('--mesh_format', default='obj', type=str, help='Format of output mesh')
parser.add_argument('--enable_loop', action='store_true', help='Enable the loop-based strategy to detect and correct outliers')
parser.add_argument('--config', default='navi.yaml', type=str, help='Path to config file')
args = parser.parse_args()
main(args)
|