File size: 17,367 Bytes
4f54ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import numpy as np
from scipy.spatial.transform import Rotation as R
# import ipdb
import math
import torch
import torch.nn.functional as F
from pytorch3d.transforms import Rotate, Translate
def intersect_skew_line_groups(p, r, mask):
# p, r both of shape (B, N, n_intersected_lines, 3)
# mask of shape (B, N, n_intersected_lines)
p_intersect, r = intersect_skew_lines_high_dim(p, r, mask=mask)
if p_intersect is None:
return None, None, None, None
_, p_line_intersect = point_line_distance(
p, r, p_intersect[..., None, :].expand_as(p)
)
intersect_dist_squared = ((p_line_intersect - p_intersect[..., None, :]) ** 2).sum(
dim=-1
)
return p_intersect, p_line_intersect, intersect_dist_squared, r
def intersect_skew_lines_high_dim(p, r, mask=None):
# Implements https://en.wikipedia.org/wiki/Skew_lines In more than two dimensions
dim = p.shape[-1]
# make sure the heading vectors are l2-normed
if mask is None:
mask = torch.ones_like(p[..., 0])
r = torch.nn.functional.normalize(r, dim=-1)
eye = torch.eye(dim, device=p.device, dtype=p.dtype)[None, None]
I_min_cov = (eye - (r[..., None] * r[..., None, :])) * mask[..., None, None]
sum_proj = I_min_cov.matmul(p[..., None]).sum(dim=-3)
# I_eps = torch.zeros_like(I_min_cov.sum(dim=-3)) + 1e-10
# p_intersect = torch.pinverse(I_min_cov.sum(dim=-3) + I_eps).matmul(sum_proj)[..., 0]
p_intersect = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
# I_min_cov.sum(dim=-3): torch.Size([1, 1, 3, 3])
# sum_proj: torch.Size([1, 1, 3, 1])
# p_intersect = np.linalg.lstsq(I_min_cov.sum(dim=-3).numpy(), sum_proj.numpy(), rcond=None)[0]
if torch.any(torch.isnan(p_intersect)):
print(p_intersect)
return None, None
ipdb.set_trace()
assert False
return p_intersect, r
def point_line_distance(p1, r1, p2):
df = p2 - p1
proj_vector = df - ((df * r1).sum(dim=-1, keepdim=True) * r1)
line_pt_nearest = p2 - proj_vector
d = (proj_vector).norm(dim=-1)
return d, line_pt_nearest
def compute_optical_axis_intersection(cameras, in_ndc=True):
centers = cameras.get_camera_center()
principal_points = cameras.principal_point
one_vec = torch.ones((len(cameras), 1), device=centers.device)
optical_axis = torch.cat((principal_points, one_vec), -1)
# optical_axis = torch.cat(
# (principal_points, cameras.focal_length[:, 0].unsqueeze(1)), -1
# )
pp = cameras.unproject_points(optical_axis, from_ndc=in_ndc, world_coordinates=True)
pp2 = torch.diagonal(pp, dim1=0, dim2=1).T
directions = pp2 - centers
centers = centers.unsqueeze(0).unsqueeze(0)
directions = directions.unsqueeze(0).unsqueeze(0)
p_intersect, p_line_intersect, _, r = intersect_skew_line_groups(
p=centers, r=directions, mask=None
)
if p_intersect is None:
dist = None
else:
p_intersect = p_intersect.squeeze().unsqueeze(0)
dist = (p_intersect - centers).norm(dim=-1)
return p_intersect, dist, p_line_intersect, pp2, r
def normalize_cameras_with_up_axis(cameras, sequence_name, scale=1.0, in_ndc=True):
"""
Normalizes cameras such that the optical axes point to the origin and the average
distance to the origin is 1.
Args:
cameras (List[camera]).
"""
# Let distance from first camera to origin be unit
new_cameras = cameras.clone()
new_transform = new_cameras.get_world_to_view_transform()
p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection(
cameras,
in_ndc=in_ndc
)
t = Translate(p_intersect)
# scale = dist.squeeze()[0]
scale = dist.squeeze().mean()
# Degenerate case
if scale == 0:
print(cameras.T)
print(new_transform.get_matrix()[:, 3, :3])
return -1
assert scale != 0
new_transform = t.compose(new_transform)
new_cameras.R = new_transform.get_matrix()[:, :3, :3]
new_cameras.T = new_transform.get_matrix()[:, 3, :3] / scale * 1.85
needs_checking = False
# ===== Rotation normalization
# Estimate the world 'up' direction assuming that yaw is small
# and running SVD on the x-vectors of the cameras
x_vectors = new_cameras.R.transpose(1, 2)[:, 0, :].clone()
x_vectors -= x_vectors.mean(dim=0, keepdim=True)
U, S, Vh = torch.linalg.svd(x_vectors)
V = Vh.mH
# vector with the smallest variation is to the normal to
# the plane of x-vectors (assume this to be the up direction)
if S[0] / S[1] > S[1] / S[2]:
print('Warning: unexpected singular values in sequence {}: {}'.format(sequence_name, S))
needs_checking = True
# return None, None, None, None, None
estimated_world_up = V[:, 2:]
# check all cameras have the same y-direction
for camera_idx in range(len(new_cameras.T)):
if torch.sign(torch.dot(estimated_world_up[:, 0],
new_cameras.R[0].transpose(0,1)[1, :])) != torch.sign(torch.dot(estimated_world_up[:, 0],
new_cameras.R[camera_idx].transpose(0,1)[1, :])):
print("Some cameras appear to be flipped in sequence {}".format(sequence_name) )
needs_checking = True
# return None, None, None, None, None
flip = torch.sign(torch.dot(estimated_world_up[:, 0], new_cameras.R[0].transpose(0,1)[1, :])) < 0
if flip:
estimated_world_up = V[:, 2:] * -1
# build the target coordinate basis using the estimated world up
target_coordinate_basis = torch.cat([V[:, :1],
estimated_world_up,
torch.linalg.cross(V[:, :1], estimated_world_up, dim=0)],
dim=1)
new_cameras.R = torch.matmul(target_coordinate_basis.T, new_cameras.R)
return new_cameras, p_intersect, p_line_intersect, pp, r, needs_checking
def dot(x, y):
if isinstance(x, np.ndarray):
return np.sum(x * y, -1, keepdims=True)
else:
return torch.sum(x * y, -1, keepdim=True)
def length(x, eps=1e-20):
if isinstance(x, np.ndarray):
return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps))
else:
return torch.sqrt(torch.clamp(dot(x, x), min=eps))
def safe_normalize(x, eps=1e-20):
return x / length(x, eps)
def look_at(campos, target, opengl=True):
# campos: [N, 3], camera/eye position
# target: [N, 3], object to look at
# return: [N, 3, 3], rotation matrix
if not opengl:
# camera forward aligns with -z
forward_vector = safe_normalize(target - campos)
up_vector = np.array([0, 1, 0], dtype=np.float32)
right_vector = safe_normalize(np.cross(forward_vector, up_vector))
up_vector = safe_normalize(np.cross(right_vector, forward_vector))
else:
# camera forward aligns with +z
forward_vector = safe_normalize(campos - target)
up_vector = np.array([0, 1, 0], dtype=np.float32)
right_vector = safe_normalize(np.cross(up_vector, forward_vector))
up_vector = safe_normalize(np.cross(forward_vector, right_vector))
R = np.stack([right_vector, up_vector, forward_vector], axis=1)
return R
# elevation & azimuth to pose (cam2world) matrix
def orbit_camera(elevation, azimuth, radius=1, is_degree=True, target=None, opengl=True):
# radius: scalar
# elevation: scalar, in (-90, 90), from +y to -y is (-90, 90)
# azimuth: scalar, in (-180, 180), from +z to +x is (0, 90)
# return: [4, 4], camera pose matrix
if is_degree:
elevation = np.deg2rad(elevation)
azimuth = np.deg2rad(azimuth)
x = radius * np.cos(elevation) * np.sin(azimuth)
y = - radius * np.sin(elevation)
z = radius * np.cos(elevation) * np.cos(azimuth)
if target is None:
target = np.zeros([3], dtype=np.float32)
campos = np.array([x, y, z]) + target # [3]
T = np.eye(4, dtype=np.float32)
T[:3, :3] = look_at(campos, target, opengl)
T[:3, 3] = campos
return T
def mat2latlon(T):
if not isinstance(T, np.ndarray):
xyz = T.cpu().detach().numpy()
else:
xyz = T.copy()
r = np.linalg.norm(xyz)
xyz = xyz / r
theta = -np.arcsin(xyz[1])
azi = np.arctan2(xyz[0], xyz[2])
return np.rad2deg(theta), np.rad2deg(azi), r
def extract_camera_properties(camera_to_world_matrix):
# Camera position is the translation part of the matrix
camera_position = camera_to_world_matrix[:3, 3]
# Extracting the forward direction vector (third column of rotation matrix)
forward = camera_to_world_matrix[:3, 2]
return camera_position, forward
def compute_angular_error_batch(rotation1, rotation2):
R_rel = np.einsum("Bij,Bjk ->Bik", rotation1.transpose(0, 2, 1), rotation2)
t = (np.trace(R_rel, axis1=1, axis2=2) - 1) / 2
theta = np.arccos(np.clip(t, -1, 1))
return theta * 180 / np.pi
def find_mask_center_and_translate(image, mask):
"""
Calculate the center of the mask and translate the image such that
the mask center is at the image center.
Args:
- image (torch.Tensor): Input image tensor of shape (N, C, H, W)
- mask (torch.Tensor): Mask tensor of shape (N, 1, H, W)
Returns:
- Translated image of shape (N, C, H, W)
"""
_, _, h, w = image.shape
# Calculate the center of mass of the mask
# Note: mask should be a binary mask of the same spatial dimensions as the image
y_coords, x_coords = torch.meshgrid(torch.arange(0, h), torch.arange(0, w), indexing='ij')
total_mass = mask.sum(dim=[2, 3], keepdim=True)
x_center = (mask * x_coords.to(image.device)).sum(dim=[2, 3], keepdim=True) / total_mass
y_center = (mask * y_coords.to(image.device)).sum(dim=[2, 3], keepdim=True) / total_mass
# Calculate the translation needed to move the mask center to the image center
image_center_x, image_center_y = w // 2, h // 2
delta_x = x_center.squeeze() - image_center_x
delta_y = y_center.squeeze() - image_center_y
return torch.tensor([delta_x, delta_y])
def create_voxel_grid(length, resolution=64):
"""
Creates a voxel grid.
xyz_range: ((min_x, max_x), (min_y, max_y), (min_z, max_z))
resolution: The number of divisions along each axis.
Returns a 4D tensor representing the voxel grid, with each voxel initialized to 1 (solid).
"""
x = torch.linspace(-length, length, resolution)
y = torch.linspace(-length, length, resolution)
z = torch.linspace(-length, length, resolution)
xx, yy, zz = torch.meshgrid(x, y, z, indexing='ij')
voxels = torch.stack([xx, yy, zz, torch.ones_like(xx)], dim=-1) # Homogeneous coordinates
return voxels
def project_voxels_to_image(voxels, camera):
"""
Projects voxel centers into the camera's image plane.
voxels: 4D tensor of voxel grid in homogeneous coordinates.
K: Camera intrinsic matrix.
R: Camera rotation matrix.
t: Camera translation vector.
Returns a tensor of projected 2D points in image coordinates.
"""
device = voxels.device
# K, R, t = torch.tensor(K, device=device), torch.tensor(R, device=device), torch.tensor(t, device=device)
# Flatten voxels to shape (N, 4) for matrix multiplication
N = voxels.nelement() // 4 # Total number of voxels
voxels_flat = voxels.reshape(-1, 4).t() # Shape (4, N)
# # Apply extrinsic parameters (rotation and translation)
# transformed_voxels = R @ voxels_flat[:3, :] + t[:, None]
# # Apply intrinsic parameters
# projected_voxels = K @ transformed_voxels
projected_voxels = camera.projection_matrix.transpose(0, 1) @ camera.world_view_transform.transpose(0, 1) @ voxels_flat
# Convert from homogeneous coordinates to 2D
projected_voxels_2d = (projected_voxels[:2, :] / projected_voxels[3, :]).t() # Reshape to grid dimensions with 2D points
projected_voxels_2d = (projected_voxels_2d.reshape(*voxels.shape[:-1], 2) + 1.) * 255 * 0.5
return projected_voxels_2d
def carve_voxels(voxel_grid, projected_points, mask):
"""
Updates the voxel grid based on the comparison with the mask.
voxel_grid: 3D tensor representing the voxel grid.
projected_points: Projected 2D points in image coordinates.
mask: Binary mask image.
"""
# Convert projected points to indices in the mask
indices_x = torch.clamp(projected_points[..., 0], 0, mask.shape[1] - 1).long()
indices_y = torch.clamp(projected_points[..., 1], 0, mask.shape[0] - 1).long()
# Check if projected points are within the object in the mask
in_object = mask[indices_y, indices_x]
# Carve out voxels where the projection does not fall within the object
voxel_grid[in_object == 0] = 0
def sample_points_from_voxel(cameras, masks, length=1, resolution=64, N=5000, inverse=False, device="cuda"):
"""
Randomly sample N points from solid regions in a voxel grid.
Args:
- voxel_grid (torch.Tensor): A 3D tensor representing the voxel grid after carving.
Solid regions are marked with 1s.
- N (int): The number of points to sample.
Returns:
- sampled_points (torch.Tensor): A tensor of shape (N, 3) representing the sampled 3D coordinates.
"""
voxel_grid = create_voxel_grid(length, resolution).to(device)
voxel_grid_indicator = torch.ones(resolution, resolution, resolution)
masks = torch.from_numpy(masks).to(device).squeeze()
for idx, cam in enumerate(cameras):
projected_points = project_voxels_to_image(voxel_grid, cam)
carve_voxels(voxel_grid_indicator, projected_points, masks[idx])
voxel_grid_indicator = voxel_grid_indicator.reshape(resolution, resolution, resolution)
# Identify the indices of solid voxels
if inverse:
solid_indices = torch.nonzero(voxel_grid_indicator == 0)
else:
solid_indices = torch.nonzero(voxel_grid_indicator == 1)
# Randomly select N indices from the solid indices
if N <= solid_indices.size(0):
# Randomly select N indices from the solid indices if there are enough solid voxels
sampled_indices = solid_indices[torch.randperm(solid_indices.size(0))[:N]]
else:
# If there are not enough solid voxels, sample with replacement
sampled_indices = solid_indices[torch.randint(0, solid_indices.size(0), (N,))]
# Convert indices to coordinates
# Note: This step assumes the voxel grid spans from 0 to 1 in each dimension.
# Adjust accordingly if your grid spans a different range.
sampled_points = sampled_indices.float() / (voxel_grid.size(0) - 1) * 2 * length - length
return sampled_points
class OrbitCamera:
def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100):
self.W = W
self.H = H
self.radius = r # camera distance from center
self.fovy = np.deg2rad(fovy) # deg 2 rad
self.near = near
self.far = far
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
self.rot = R.from_matrix(np.eye(3))
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
@property
def fovx(self):
return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H)
@property
def campos(self):
return self.pose[:3, 3]
# pose (c2w)
@property
def pose(self):
# first move camera to radius
res = np.eye(4, dtype=np.float32)
res[2, 3] = self.radius # opengl convention...
# rotate
rot = np.eye(4, dtype=np.float32)
rot[:3, :3] = self.rot.as_matrix()
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
# view (w2c)
@property
def view(self):
return np.linalg.inv(self.pose)
# projection (perspective)
@property
def perspective(self):
y = np.tan(self.fovy / 2)
aspect = self.W / self.H
return np.array(
[
[1 / (y * aspect), 0, 0, 0],
[0, -1 / y, 0, 0],
[
0,
0,
-(self.far + self.near) / (self.far - self.near),
-(2 * self.far * self.near) / (self.far - self.near),
],
[0, 0, -1, 0],
],
dtype=np.float32,
)
# intrinsics
@property
def intrinsics(self):
focal = self.H / (2 * np.tan(self.fovy / 2))
return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32)
@property
def mvp(self):
return self.perspective @ np.linalg.inv(self.pose) # [4, 4]
def orbit(self, dx, dy):
# rotate along camera up/side axis!
side = self.rot.as_matrix()[:3, 0]
rotvec_x = self.up * np.radians(-0.05 * dx)
rotvec_y = side * np.radians(-0.05 * dy)
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
# pan in camera coordinate system (careful on the sensitivity!)
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz]) |