File size: 27,101 Bytes
4f54ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import os
import cv2
import sys
import json
import time
import tqdm
import numpy as np
import pandas as pd

import torch
import torch.nn.functional as F

import rembg
from liegroups.torch import SE3

import sys 
sys.path.append('./')

from sparseags.cam_utils import orbit_camera, OrbitCamera, mat2latlon, find_mask_center_and_translate
from sparseags.render_utils.gs_renderer import Renderer, Camera, FoVCamera, CustomCamera
from sparseags.mesh_utils.grid_put import mipmap_linear_grid_put_2d
from sparseags.mesh_utils.mesh import Mesh, safe_normalize


class GUI:
    def __init__(self, opt):
        self.opt = opt  # shared with the trainer's opt to support in-place modification of rendering parameters.
        self.gui = opt.gui  # enable gui
        self.W = opt.W
        self.H = opt.H

        self.mode = "image"
        self.seed = 0

        self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
        self.need_update = True  # update buffer_image

        # models
        self.device = torch.device("cuda")
        self.bg_remover = None

        self.guidance_sd = None
        self.guidance_zero123 = None
        self.guidance_dino = None

        self.enable_sd = False
        self.enable_zero123 = False
        self.enable_dino = False

        # renderer
        self.renderer = Renderer(sh_degree=self.opt.sh_degree)
        self.renderer.enable_dino = self.opt.lambda_dino > 0
        self.renderer.gaussians.enable_dino = self.opt.lambda_dino > 0
        self.renderer.gaussians.dino_feat_dim = 36
        self.gaussain_scale_factor = 1

        # input image
        self.input_img = None
        self.input_mask = None
        self.input_img_torch = None
        self.input_mask_torch = None

        # training stuff
        self.training = False
        self.optimizer = None
        self.step = 0
        self.train_steps = 1  # steps per rendering loop
        
        # load input data
        self.load_input(self.opt.camera_path, self.opt.order_path)

        self.cam = OrbitCamera(opt.W, opt.H, r=3, fovy=opt.fovy)

        # override if provide a checkpoint
        if self.opt.load is not None:
            self.renderer.initialize(self.opt.load)            
        else:
            # initialize gaussians to a blob
            self.renderer.initialize(num_pts=self.opt.num_pts, radius=0.3, mode='sphere')  # 0.5 for radius 3

            # initialize gaussians to a carved voxel 
            # self.renderer.initialize(num_pts=self.opt.num_pts, radius=0.5, cameras=self.cams, masks=self.input_mask, mode='carve')  # 0.5

    def seed_everything(self):
        try:
            seed = int(self.seed)
        except:
            seed = np.random.randint(0, 1000000)

        os.environ["PYTHONHASHSEED"] = str(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = True

        self.last_seed = seed

    def prepare_train(self):
        self.step = 0

        # setup training
        self.renderer.gaussians.training_setup(self.opt)
        # do progressive sh-level
        self.renderer.gaussians.active_sh_degree = 0
        self.optimizer = self.renderer.gaussians.optimizer

        self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
        self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
        self.enable_dino = self.opt.lambda_dino > 0 

        # lazy load guidance model
        if self.guidance_zero123 is None and self.enable_zero123:
            print(f"[INFO] loading zero123...")
            from sparseags.guidance_utils.zero123_6d_utils import Zero123
            self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
            print(f"[INFO] loaded zero123!")
            self.guidance_zero123.opt = self.opt
            self.guidance_zero123.num_views = self.num_views

        # input image
        if self.input_img is not None:
            import torchvision.transforms as transforms
            from PIL import Image
            self.input_img_torch = torch.from_numpy(self.input_img).permute(0, 3, 1, 2).to(self.device)
            self.input_mask_torch = torch.from_numpy(self.input_mask).permute(0, 3, 1, 2).to(self.device)

        # prepare embeddings
        with torch.no_grad():
            if self.enable_zero123:
                self.guidance_zero123.get_img_embeds(self.input_img_torch)

    def train_step(self):
        starter = torch.cuda.Event(enable_timing=True)
        ender = torch.cuda.Event(enable_timing=True)
        starter.record()

        for _ in range(self.train_steps):

            self.step += 1
            step_ratio = min(1, self.step / self.opt.iters)

            # update lr
            self.renderer.gaussians.update_learning_rate(self.step)

            loss = 0

            ### known view
            for choice in range(self.num_views):
                # For multiview training
                cur_cam = self.cams[choice]

                bg_size = self.renderer.gaussians.dino_feat_dim if self.enable_dino else 3
                bg_color = torch.ones(
                    bg_size,
                    dtype=torch.float32,
                    device="cuda",
                )
                out = self.renderer.render(cur_cam, bg_color=bg_color)

                # rgb loss
                image = out["image"]
                loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch[choice])

                # mask loss
                mask = out["alpha"]
                loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch[choice])

                # dino loss
                if self.enable_dino:
                    feature = out["feature"]
                    loss = loss + 1000 * step_ratio * F.mse_loss(feature, self.guidance_dino.embeddings[choice])

            ### novel view (manual batch)
            render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
            images = []
            masks = []
            vers, hors, radii = [], [], []
            # avoid too large elevation (> 80 or < -80)
            min_ver = max(-60 + np.array(self.opt.ref_polars).min(), -80)  # + - 30 for co3D
            max_ver = min(60 + np.array(self.opt.ref_polars).max(), 80)

            for _ in range(self.opt.batch_size):
                # render random view
                ver = np.random.randint(min_ver, max_ver) - self.opt.ref_polars[0]
                hor = np.random.randint(-180, 180)
                radius = 0

                vers.append(ver)
                hors.append(hor)
                radii.append(radius)

                pose = orbit_camera(
                    self.opt.ref_polars[0] + ver, 
                    self.opt.ref_azimuths[0] + hor, 
                    np.array(self.opt.ref_radii).mean() + radius,
                )

                # Azimuth
                # [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1
                # [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3. 
                # Elevation: [0, 90): 0 [-90, 0): 1
                idx_ver, idx_hor = int((self.opt.ref_polars[0]+ver) < 0), hor // 45

                flag = 0
                cx, cy = self.pp_pools[idx_ver, idx_hor+4].tolist()
                cnt = 0
                fx, fy = self.fx, self.fy

                # in each iter we modify cx, cy, fx, fy to make sure the rendered object is at the center and has a reasonable size
                while not flag:

                    if cnt >= 10:
                        # print(f"[ERROR] Something might be wrong here!")
                        break

                    flag_principal_point, flag_focal_length = 0, 0

                    # we modified the field of view. Otherwise, the rendered object will be too small
                    # cur_cam = FoVCamera(pose, render_resolution, render_resolution, self.fovy, self.fovx, self.cam.near, self.cam.far)
                    cur_cam = Camera(pose, render_resolution, render_resolution, fx, fy, cx, cy, self.cam.near, self.cam.far)

                    bg_size = self.renderer.gaussians.dino_feat_dim if self.enable_dino else 3
                    bg_color = torch.ones(bg_size, dtype=torch.float32, device="cuda") if np.random.rand() > self.opt.invert_bg_prob else torch.zeros(bg_size, dtype=torch.float32, device="cuda")
                    out = self.renderer.render(cur_cam, bg_color=bg_color)

                    image = out["image"].unsqueeze(0) 
                    mask = out["alpha"].unsqueeze(0)
                    delta_xy = find_mask_center_and_translate(image.detach(), mask.detach()) / render_resolution * 256

                    # (1) check if the principal points are appropriate
                    if delta_xy[0].abs() > 10 or delta_xy[1].abs() > 10:
                        cx -= delta_xy[0]
                        cy -= delta_xy[1]
                        self.pp_pools[idx_ver, idx_hor+4] = torch.tensor([cx, cy])  # Update pp_pools
                    else:
                        flag_principal_point = 1

                    num_pixs_mask = (mask > 0.5).float().sum().item()
                    target_num_pixs = render_resolution ** 2 / (1.2 ** 2)

                    mask_to_compute = (mask > 0.5).squeeze().detach().cpu().numpy()
                    y_indices, x_indices = np.where(mask_to_compute > 0)
    
                    if len(x_indices) == 0 or len(y_indices) == 0:
                        # return None or some indication that there's no object in the mask
                        continue
                    
                    # find the bounding box coordinates
                    x1, y1 = np.min(x_indices), np.min(y_indices)
                    x2, y2 = np.max(x_indices), np.max(y_indices)
    
                    bbox =  np.array([x1, y1, x2, y2])
                    extents = (bbox[2:] - bbox[:2]).max()
                    num_pixs_mask = extents ** 2

                    # (2) check if the focal lengths are appropriate
                    if abs(num_pixs_mask - target_num_pixs) > 0.05 * render_resolution ** 2:
                        if num_pixs_mask == 0:
                            pass
                        else:
                            fx = fx * np.sqrt(target_num_pixs / num_pixs_mask)
                            fy = fy * np.sqrt(target_num_pixs / num_pixs_mask)
                    else:
                        flag_focal_length = 1

                    if flag_principal_point * flag_focal_length == 1:
                        flag = 1

                    cnt += 1

                images.append(image)
                masks.append(mask)

            images = torch.cat(images, dim=0)

            if self.enable_zero123:
                target_RT = {
                    "c2w": pose,
                    "focal_length": np.array(fx, fy),
                }
                loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.batch_train_step(images, target_RT, self.cams, step_ratio=step_ratio if self.opt.anneal_timestep else None)

            if self.enable_dino:
                loss_dino = self.guidance_dino.train_step(
                    images, 
                    out["feature"],
                    step_ratio=step_ratio if self.opt.anneal_timestep else None
                )
                loss = loss + self.opt.lambda_dino * loss_dino

            # optimize step
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()
            latlons = [mat2latlon(cam.c2w[:3, 3]) for cam in self.cams]
            if self.opt.opt_cam:
                for i, cam in enumerate(self.cams):
                    w2c = cam.w2c @ SE3.exp(cam.cam_params.detach()).as_matrix()
                    w2c[:2, :3] *= -1
                    w2c[:2, 3] *= -1
                    self.camera_tracks[i].append(w2c.tolist())
            self.opt.ref_polars = [float(cam[0]) for cam in latlons]
            self.opt.ref_azimuths = [float(cam[1]) for cam in latlons]
            self.opt.ref_radii = [float(cam[2]) for cam in latlons]

            # densify and prune
            if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
                viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
                self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)

                if self.step % self.opt.densification_interval == 0:
                    self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=4, max_screen_size=1)
                
                # if self.step % self.opt.opacity_reset_interval == 0:
                #     self.renderer.gaussians.reset_opacity()

                if self.step % 100 == 0 and self.renderer.gaussians.max_sh_degree != 0:
                    self.renderer.gaussians.oneupSHdegree()

        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender)

        self.need_update = True
    
    def load_input(self, camera_path, order_path=None):
        # load image
        print(f'[INFO] load data from {camera_path}...')

        if order_path is not None:
            with open(order_path, 'r') as f:
                indices = json.load(f)
        else:
            indices = None

        with open(camera_path, 'r') as f:
            data = json.load(f)

        self.cam_params = {}
        for k, v in data.items():
            if indices is None:
                self.cam_params[k] = data[k]
            else:
                if int(k) in indices or k in indices:
                    self.cam_params[k] = data[k]

        if self.opt.all_views:
            for k, v in self.cam_params.items():
                self.cam_params[k]['opt_cam'] = 1
                self.cam_params[k]['flag'] = 1
        else:
            for k, v in self.cam_params.items():
                if int(self.cam_params[k]['flag']):
                    self.cam_params[k]['opt_cam'] = 1
                else:
                    self.cam_params[k]['opt_cam'] = 0

        img_paths = [v["filepath"] for k, v in self.cam_params.items() if v["flag"]]
        self.num_views = len(img_paths)
        print(f"[INFO] Number of views: {self.num_views}")

        for filepath in img_paths:
            print(filepath)

        images, masks = [], []

        for i in range(self.num_views):
            img = cv2.imread(img_paths[i], cv2.IMREAD_UNCHANGED)
            if img.shape[-1] == 3:
                if self.bg_remover is None:
                    self.bg_remover = rembg.new_session()
                img = rembg.remove(img, session=self.bg_remover)

            img = img.astype(np.float32) / 255.0

            # Non-integer cropping creates non-zero mask values
            input_mask = (img[..., 3:] > 0.5).astype(np.float32)

            # white bg
            input_img = img[..., :3] * input_mask + (1 - input_mask)
            # bgr to rgb
            input_img = input_img[..., ::-1].copy()

            images.append(input_img), masks.append(input_mask)

        images = np.stack(images, axis=0)
        masks = np.stack(masks, axis=0)
        self.input_img = images[:self.num_views]
        self.input_mask = masks[:self.num_views]
        self.all_input_images = images

        self.cams = [CustomCamera(v, index=int(k), opt_pose=self.opt.opt_cam and v['opt_cam']) for k, v in self.cam_params.items() if v["flag"]]
        cam_centers = [mat2latlon(cam.camera_center) for cam in self.cams]
        self.opt.ref_polars = [float(cam[0]) for cam in cam_centers]
        self.opt.ref_azimuths = [float(cam[1]) for cam in cam_centers]
        self.opt.ref_radii = [float(cam[2]) for cam in cam_centers]
        self.fx = np.array([cam.fx for cam in self.cams], dtype=np.float32).mean()
        self.fy = np.array([cam.fy for cam in self.cams], dtype=np.float32).mean()
        self.cx = 128
        self.cy = 128
        if self.opt.opt_cam:
            self.camera_tracks = {}
            for i, cam in enumerate(self.cams):
                self.camera_tracks[i] = []

        # Azimuth Mapping: [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1,
        #                   [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
        # Elevation Mapping: [0, 90): 0, [-90, 0): 1.

        # Principal Point Pool: Tensor (2, 8, 2), where:
        #   - 2: Elevation groups, 8: Azimuth intervals, 2: x, y coordinates (init to 128).

        # we created a "pool" for principal points
        # we use these principal points to render image to make sure object is at the center
        self.pp_pools = torch.full((2, 8, 2), 128)
        if self.opt.opt_cam:
            self.renderer.gaussians.cam_params = [cam.cam_params for cam in self.cams[:] if cam.opt_pose]

    @torch.no_grad()
    def save_video(self, post_fix=None):
        xyz = self.renderer.gaussians._xyz
        center = self.renderer.gaussians._xyz.mean(dim=0)
        squared_distances = torch.sum((xyz - center) ** 2, dim=1)
        max_distance_squared = torch.max(squared_distances)
        radius = torch.sqrt(max_distance_squared) + 1.0
        radius = radius.detach().cpu().numpy()

        render_resolution = 256
        images = []
        frame_rate = 30
        image_size = (render_resolution, render_resolution)  # Size of each image
        video_path = self.opt.save_path + f'_rendered_video_{post_fix}.mp4'

        azimuth = np.arange(0, 360, 3, dtype=np.int32)

        for azi in tqdm.tqdm(azimuth):
            target = center.detach().cpu().numpy()
            pose = orbit_camera(-30, azi, radius, target=target)
            cur_cam = FoVCamera(
                pose,
                render_resolution,
                render_resolution,
                self.cam.fovy,
                self.cam.fovx,
                self.cam.near,
                self.cam.far,
            )

            out = self.renderer.render(cur_cam)
            img = out["image"].detach().cpu().numpy() # [3, H, W] in [0, 1]
            img = np.transpose(img, (1, 2, 0))
            image = (img * 255).astype(np.uint8)
            images.append(image)

        images = np.stack(images, axis=0)
        # ~4 seconds, 120 frames at 30 fps
        import imageio
        imageio.mimwrite(video_path, images, fps=30, quality=8, macro_block_size=1)


    @torch.no_grad()
    def save_model(self, mode='geo', texture_size=1024):
        os.makedirs(self.opt.outdir, exist_ok=True)
        if mode == 'geo':
            path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.ply')
            mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)
            mesh.write_ply(path)

        elif mode == 'geo+tex':
            path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.' + self.opt.mesh_format)
            mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)

            # perform texture extraction
            print(f"[INFO] unwrap uv...")
            h = w = texture_size
            mesh.auto_uv()
            mesh.auto_normal()

            albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32)
            cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32)
            if self.enable_dino:
                feature = torch.zeros((h, w, self.renderer.gaussians.dino_feat_dim), device=self.device, dtype=torch.float32)

            # self.prepare_train() # tmp fix for not loading 0123
            # vers = [0]
            # hors = [0]
            vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9]
            hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0]

            render_resolution = 512

            import nvdiffrast.torch as dr

            if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
                glctx = dr.RasterizeGLContext()
            else:
                glctx = dr.RasterizeCudaContext()

            for ver, hor in zip(vers, hors):
                # render image
                pose = orbit_camera(ver, hor, self.cam.radius)

                cur_cam = FoVCamera(
                    pose,
                    render_resolution,
                    render_resolution,
                    self.cam.fovy,
                    self.cam.fovx,
                    self.cam.near,
                    self.cam.far,
                )
                
                cur_out = self.renderer.render(cur_cam)

                rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
                if self.enable_dino:
                    features = cur_out["feature"].unsqueeze(0) # [1, 384, 512, 512]

                # enhance texture quality with zero123 [not working well]
                # if self.opt.guidance_model == 'zero123':
                #     rgbs = self.guidance.refine(rgbs, [ver], [hor], [0])
                    # import kiui
                    # kiui.vis.plot_image(rgbs)
                    
                # get coordinate in texture image
                pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
                proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device)

                v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
                v_clip = v_cam @ proj.T
                rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution))

                depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1]
                depth = depth.squeeze(0) # [H, W, 1]

                alpha = (rast[0, ..., 3:] > 0).float()

                uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft)  # [1, 512, 512, 2] in [0, 1]

                # use normal to produce a back-project mask
                normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn)
                normal = safe_normalize(normal[0])

                # rotated normal (where [0, 0, 1] always faces camera)
                rot_normal = normal @ pose[:3, :3]
                viewcos = rot_normal[..., [2]]

                mask = (alpha > 0) & (viewcos > 0.5)  # [H, W, 1]
                mask = mask.view(-1)

                uvs = uvs.view(-1, 2).clamp(0, 1)[mask]
                rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous()
                
                # update texture image
                cur_albedo, cur_cnt = mipmap_linear_grid_put_2d(
                    h, w,
                    uvs[..., [1, 0]] * 2 - 1,
                    rgbs,
                    min_resolution=256,
                    return_count=True,
                )

                if self.enable_dino:
                    features = features.view(features.shape[1], -1).permute(1, 0)[mask].contiguous()
                    cur_feature, _ = mipmap_linear_grid_put_2d(
                    h, w,
                    uvs[..., [1, 0]] * 2 - 1,
                    features,
                    min_resolution=256,
                    return_count=True,
                )
                
                # albedo += cur_albedo
                # cnt += cur_cnt
                mask = cnt.squeeze(-1) < 0.1
                albedo[mask] += cur_albedo[mask]
                cnt[mask] += cur_cnt[mask]

                if self.enable_dino:
                    feature[mask] += cur_feature[mask]

            mask = cnt.squeeze(-1) > 0
            albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3)

            if self.enable_dino:
                feature[mask] = feature[mask] / cnt[mask].repeat(1, feature.shape[-1])

            mask = mask.view(h, w)

            albedo = albedo.detach().cpu().numpy()
            mask = mask.detach().cpu().numpy()

            if self.enable_dino:
                feature = feature.detach().cpu().numpy()

            # dilate texture
            from sklearn.neighbors import NearestNeighbors
            from scipy.ndimage import binary_dilation, binary_erosion

            inpaint_region = binary_dilation(mask, iterations=32)
            inpaint_region[mask] = 0

            search_region = mask.copy()
            not_search_region = binary_erosion(search_region, iterations=3)
            search_region[not_search_region] = 0

            search_coords = np.stack(np.nonzero(search_region), axis=-1)
            inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)

            knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(
                search_coords
            )
            _, indices = knn.kneighbors(inpaint_coords)

            albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)]

            mesh.albedo = torch.from_numpy(albedo).to(self.device)
            # mesh.write(path)

            if self.enable_dino:
                feature[tuple(inpaint_coords.T)] = feature[tuple(search_coords[indices[:, 0]].T)]
                mesh.feature = torch.from_numpy(feature).to(self.device)

            mesh.write(path, self.enable_dino)

        else:
            path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
            self.renderer.gaussians.save_ply(path)

        print(f"[INFO] save model to {path}.")
    
    # no gui mode
    def train(self, iters=500):
        if iters > 0:
            self.prepare_train()
            for i in tqdm.trange(iters):
                self.train_step()
            # do a last prune
            self.renderer.gaussians.prune(min_opacity=0.01, extent=1, max_screen_size=1)
        if self.opt.opt_cam:
            for cam in self.cams:
                try:
                    self.cam_params[str(cam.index)]["R"] = cam.rotation.tolist()
                    self.cam_params[str(cam.index)]["T"] = cam.translation.tolist()
                except KeyError:
                    self.cam_params[f"{cam.index:03}"]["R"] = cam.rotation.tolist()
                    self.cam_params[f"{cam.index:03}"]["T"] = cam.translation.tolist()
        with open(self.opt.camera_path.replace(".json", "_updated.json"), "w") as file:
            json.dump(self.cam_params, file, indent=4)
        self.save_model(mode='model')
        self.save_model(mode='geo+tex')


if __name__ == "__main__":
    import argparse
    from omegaconf import OmegaConf

    parser = argparse.ArgumentParser()
    parser.add_argument("--config", required=True, help="path to the yaml config file")
    args, extras = parser.parse_known_args()

    # override default config from cli
    opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))

    gui = GUI(opt)

    gui.train(opt.iters)