File size: 27,101 Bytes
4f54ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import os
import cv2
import sys
import json
import time
import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import rembg
from liegroups.torch import SE3
import sys
sys.path.append('./')
from sparseags.cam_utils import orbit_camera, OrbitCamera, mat2latlon, find_mask_center_and_translate
from sparseags.render_utils.gs_renderer import Renderer, Camera, FoVCamera, CustomCamera
from sparseags.mesh_utils.grid_put import mipmap_linear_grid_put_2d
from sparseags.mesh_utils.mesh import Mesh, safe_normalize
class GUI:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.gui = opt.gui # enable gui
self.W = opt.W
self.H = opt.H
self.mode = "image"
self.seed = 0
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # update buffer_image
# models
self.device = torch.device("cuda")
self.bg_remover = None
self.guidance_sd = None
self.guidance_zero123 = None
self.guidance_dino = None
self.enable_sd = False
self.enable_zero123 = False
self.enable_dino = False
# renderer
self.renderer = Renderer(sh_degree=self.opt.sh_degree)
self.renderer.enable_dino = self.opt.lambda_dino > 0
self.renderer.gaussians.enable_dino = self.opt.lambda_dino > 0
self.renderer.gaussians.dino_feat_dim = 36
self.gaussain_scale_factor = 1
# input image
self.input_img = None
self.input_mask = None
self.input_img_torch = None
self.input_mask_torch = None
# training stuff
self.training = False
self.optimizer = None
self.step = 0
self.train_steps = 1 # steps per rendering loop
# load input data
self.load_input(self.opt.camera_path, self.opt.order_path)
self.cam = OrbitCamera(opt.W, opt.H, r=3, fovy=opt.fovy)
# override if provide a checkpoint
if self.opt.load is not None:
self.renderer.initialize(self.opt.load)
else:
# initialize gaussians to a blob
self.renderer.initialize(num_pts=self.opt.num_pts, radius=0.3, mode='sphere') # 0.5 for radius 3
# initialize gaussians to a carved voxel
# self.renderer.initialize(num_pts=self.opt.num_pts, radius=0.5, cameras=self.cams, masks=self.input_mask, mode='carve') # 0.5
def seed_everything(self):
try:
seed = int(self.seed)
except:
seed = np.random.randint(0, 1000000)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
self.last_seed = seed
def prepare_train(self):
self.step = 0
# setup training
self.renderer.gaussians.training_setup(self.opt)
# do progressive sh-level
self.renderer.gaussians.active_sh_degree = 0
self.optimizer = self.renderer.gaussians.optimizer
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
self.enable_dino = self.opt.lambda_dino > 0
# lazy load guidance model
if self.guidance_zero123 is None and self.enable_zero123:
print(f"[INFO] loading zero123...")
from sparseags.guidance_utils.zero123_6d_utils import Zero123
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
print(f"[INFO] loaded zero123!")
self.guidance_zero123.opt = self.opt
self.guidance_zero123.num_views = self.num_views
# input image
if self.input_img is not None:
import torchvision.transforms as transforms
from PIL import Image
self.input_img_torch = torch.from_numpy(self.input_img).permute(0, 3, 1, 2).to(self.device)
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(0, 3, 1, 2).to(self.device)
# prepare embeddings
with torch.no_grad():
if self.enable_zero123:
self.guidance_zero123.get_img_embeds(self.input_img_torch)
def train_step(self):
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
for _ in range(self.train_steps):
self.step += 1
step_ratio = min(1, self.step / self.opt.iters)
# update lr
self.renderer.gaussians.update_learning_rate(self.step)
loss = 0
### known view
for choice in range(self.num_views):
# For multiview training
cur_cam = self.cams[choice]
bg_size = self.renderer.gaussians.dino_feat_dim if self.enable_dino else 3
bg_color = torch.ones(
bg_size,
dtype=torch.float32,
device="cuda",
)
out = self.renderer.render(cur_cam, bg_color=bg_color)
# rgb loss
image = out["image"]
loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch[choice])
# mask loss
mask = out["alpha"]
loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch[choice])
# dino loss
if self.enable_dino:
feature = out["feature"]
loss = loss + 1000 * step_ratio * F.mse_loss(feature, self.guidance_dino.embeddings[choice])
### novel view (manual batch)
render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
images = []
masks = []
vers, hors, radii = [], [], []
# avoid too large elevation (> 80 or < -80)
min_ver = max(-60 + np.array(self.opt.ref_polars).min(), -80) # + - 30 for co3D
max_ver = min(60 + np.array(self.opt.ref_polars).max(), 80)
for _ in range(self.opt.batch_size):
# render random view
ver = np.random.randint(min_ver, max_ver) - self.opt.ref_polars[0]
hor = np.random.randint(-180, 180)
radius = 0
vers.append(ver)
hors.append(hor)
radii.append(radius)
pose = orbit_camera(
self.opt.ref_polars[0] + ver,
self.opt.ref_azimuths[0] + hor,
np.array(self.opt.ref_radii).mean() + radius,
)
# Azimuth
# [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1
# [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
# Elevation: [0, 90): 0 [-90, 0): 1
idx_ver, idx_hor = int((self.opt.ref_polars[0]+ver) < 0), hor // 45
flag = 0
cx, cy = self.pp_pools[idx_ver, idx_hor+4].tolist()
cnt = 0
fx, fy = self.fx, self.fy
# in each iter we modify cx, cy, fx, fy to make sure the rendered object is at the center and has a reasonable size
while not flag:
if cnt >= 10:
# print(f"[ERROR] Something might be wrong here!")
break
flag_principal_point, flag_focal_length = 0, 0
# we modified the field of view. Otherwise, the rendered object will be too small
# cur_cam = FoVCamera(pose, render_resolution, render_resolution, self.fovy, self.fovx, self.cam.near, self.cam.far)
cur_cam = Camera(pose, render_resolution, render_resolution, fx, fy, cx, cy, self.cam.near, self.cam.far)
bg_size = self.renderer.gaussians.dino_feat_dim if self.enable_dino else 3
bg_color = torch.ones(bg_size, dtype=torch.float32, device="cuda") if np.random.rand() > self.opt.invert_bg_prob else torch.zeros(bg_size, dtype=torch.float32, device="cuda")
out = self.renderer.render(cur_cam, bg_color=bg_color)
image = out["image"].unsqueeze(0)
mask = out["alpha"].unsqueeze(0)
delta_xy = find_mask_center_and_translate(image.detach(), mask.detach()) / render_resolution * 256
# (1) check if the principal points are appropriate
if delta_xy[0].abs() > 10 or delta_xy[1].abs() > 10:
cx -= delta_xy[0]
cy -= delta_xy[1]
self.pp_pools[idx_ver, idx_hor+4] = torch.tensor([cx, cy]) # Update pp_pools
else:
flag_principal_point = 1
num_pixs_mask = (mask > 0.5).float().sum().item()
target_num_pixs = render_resolution ** 2 / (1.2 ** 2)
mask_to_compute = (mask > 0.5).squeeze().detach().cpu().numpy()
y_indices, x_indices = np.where(mask_to_compute > 0)
if len(x_indices) == 0 or len(y_indices) == 0:
# return None or some indication that there's no object in the mask
continue
# find the bounding box coordinates
x1, y1 = np.min(x_indices), np.min(y_indices)
x2, y2 = np.max(x_indices), np.max(y_indices)
bbox = np.array([x1, y1, x2, y2])
extents = (bbox[2:] - bbox[:2]).max()
num_pixs_mask = extents ** 2
# (2) check if the focal lengths are appropriate
if abs(num_pixs_mask - target_num_pixs) > 0.05 * render_resolution ** 2:
if num_pixs_mask == 0:
pass
else:
fx = fx * np.sqrt(target_num_pixs / num_pixs_mask)
fy = fy * np.sqrt(target_num_pixs / num_pixs_mask)
else:
flag_focal_length = 1
if flag_principal_point * flag_focal_length == 1:
flag = 1
cnt += 1
images.append(image)
masks.append(mask)
images = torch.cat(images, dim=0)
if self.enable_zero123:
target_RT = {
"c2w": pose,
"focal_length": np.array(fx, fy),
}
loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.batch_train_step(images, target_RT, self.cams, step_ratio=step_ratio if self.opt.anneal_timestep else None)
if self.enable_dino:
loss_dino = self.guidance_dino.train_step(
images,
out["feature"],
step_ratio=step_ratio if self.opt.anneal_timestep else None
)
loss = loss + self.opt.lambda_dino * loss_dino
# optimize step
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
latlons = [mat2latlon(cam.c2w[:3, 3]) for cam in self.cams]
if self.opt.opt_cam:
for i, cam in enumerate(self.cams):
w2c = cam.w2c @ SE3.exp(cam.cam_params.detach()).as_matrix()
w2c[:2, :3] *= -1
w2c[:2, 3] *= -1
self.camera_tracks[i].append(w2c.tolist())
self.opt.ref_polars = [float(cam[0]) for cam in latlons]
self.opt.ref_azimuths = [float(cam[1]) for cam in latlons]
self.opt.ref_radii = [float(cam[2]) for cam in latlons]
# densify and prune
if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if self.step % self.opt.densification_interval == 0:
self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=4, max_screen_size=1)
# if self.step % self.opt.opacity_reset_interval == 0:
# self.renderer.gaussians.reset_opacity()
if self.step % 100 == 0 and self.renderer.gaussians.max_sh_degree != 0:
self.renderer.gaussians.oneupSHdegree()
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.need_update = True
def load_input(self, camera_path, order_path=None):
# load image
print(f'[INFO] load data from {camera_path}...')
if order_path is not None:
with open(order_path, 'r') as f:
indices = json.load(f)
else:
indices = None
with open(camera_path, 'r') as f:
data = json.load(f)
self.cam_params = {}
for k, v in data.items():
if indices is None:
self.cam_params[k] = data[k]
else:
if int(k) in indices or k in indices:
self.cam_params[k] = data[k]
if self.opt.all_views:
for k, v in self.cam_params.items():
self.cam_params[k]['opt_cam'] = 1
self.cam_params[k]['flag'] = 1
else:
for k, v in self.cam_params.items():
if int(self.cam_params[k]['flag']):
self.cam_params[k]['opt_cam'] = 1
else:
self.cam_params[k]['opt_cam'] = 0
img_paths = [v["filepath"] for k, v in self.cam_params.items() if v["flag"]]
self.num_views = len(img_paths)
print(f"[INFO] Number of views: {self.num_views}")
for filepath in img_paths:
print(filepath)
images, masks = [], []
for i in range(self.num_views):
img = cv2.imread(img_paths[i], cv2.IMREAD_UNCHANGED)
if img.shape[-1] == 3:
if self.bg_remover is None:
self.bg_remover = rembg.new_session()
img = rembg.remove(img, session=self.bg_remover)
img = img.astype(np.float32) / 255.0
# Non-integer cropping creates non-zero mask values
input_mask = (img[..., 3:] > 0.5).astype(np.float32)
# white bg
input_img = img[..., :3] * input_mask + (1 - input_mask)
# bgr to rgb
input_img = input_img[..., ::-1].copy()
images.append(input_img), masks.append(input_mask)
images = np.stack(images, axis=0)
masks = np.stack(masks, axis=0)
self.input_img = images[:self.num_views]
self.input_mask = masks[:self.num_views]
self.all_input_images = images
self.cams = [CustomCamera(v, index=int(k), opt_pose=self.opt.opt_cam and v['opt_cam']) for k, v in self.cam_params.items() if v["flag"]]
cam_centers = [mat2latlon(cam.camera_center) for cam in self.cams]
self.opt.ref_polars = [float(cam[0]) for cam in cam_centers]
self.opt.ref_azimuths = [float(cam[1]) for cam in cam_centers]
self.opt.ref_radii = [float(cam[2]) for cam in cam_centers]
self.fx = np.array([cam.fx for cam in self.cams], dtype=np.float32).mean()
self.fy = np.array([cam.fy for cam in self.cams], dtype=np.float32).mean()
self.cx = 128
self.cy = 128
if self.opt.opt_cam:
self.camera_tracks = {}
for i, cam in enumerate(self.cams):
self.camera_tracks[i] = []
# Azimuth Mapping: [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1,
# [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
# Elevation Mapping: [0, 90): 0, [-90, 0): 1.
# Principal Point Pool: Tensor (2, 8, 2), where:
# - 2: Elevation groups, 8: Azimuth intervals, 2: x, y coordinates (init to 128).
# we created a "pool" for principal points
# we use these principal points to render image to make sure object is at the center
self.pp_pools = torch.full((2, 8, 2), 128)
if self.opt.opt_cam:
self.renderer.gaussians.cam_params = [cam.cam_params for cam in self.cams[:] if cam.opt_pose]
@torch.no_grad()
def save_video(self, post_fix=None):
xyz = self.renderer.gaussians._xyz
center = self.renderer.gaussians._xyz.mean(dim=0)
squared_distances = torch.sum((xyz - center) ** 2, dim=1)
max_distance_squared = torch.max(squared_distances)
radius = torch.sqrt(max_distance_squared) + 1.0
radius = radius.detach().cpu().numpy()
render_resolution = 256
images = []
frame_rate = 30
image_size = (render_resolution, render_resolution) # Size of each image
video_path = self.opt.save_path + f'_rendered_video_{post_fix}.mp4'
azimuth = np.arange(0, 360, 3, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
target = center.detach().cpu().numpy()
pose = orbit_camera(-30, azi, radius, target=target)
cur_cam = FoVCamera(
pose,
render_resolution,
render_resolution,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
)
out = self.renderer.render(cur_cam)
img = out["image"].detach().cpu().numpy() # [3, H, W] in [0, 1]
img = np.transpose(img, (1, 2, 0))
image = (img * 255).astype(np.uint8)
images.append(image)
images = np.stack(images, axis=0)
# ~4 seconds, 120 frames at 30 fps
import imageio
imageio.mimwrite(video_path, images, fps=30, quality=8, macro_block_size=1)
@torch.no_grad()
def save_model(self, mode='geo', texture_size=1024):
os.makedirs(self.opt.outdir, exist_ok=True)
if mode == 'geo':
path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.ply')
mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)
mesh.write_ply(path)
elif mode == 'geo+tex':
path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.' + self.opt.mesh_format)
mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)
# perform texture extraction
print(f"[INFO] unwrap uv...")
h = w = texture_size
mesh.auto_uv()
mesh.auto_normal()
albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32)
cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32)
if self.enable_dino:
feature = torch.zeros((h, w, self.renderer.gaussians.dino_feat_dim), device=self.device, dtype=torch.float32)
# self.prepare_train() # tmp fix for not loading 0123
# vers = [0]
# hors = [0]
vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9]
hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0]
render_resolution = 512
import nvdiffrast.torch as dr
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
glctx = dr.RasterizeGLContext()
else:
glctx = dr.RasterizeCudaContext()
for ver, hor in zip(vers, hors):
# render image
pose = orbit_camera(ver, hor, self.cam.radius)
cur_cam = FoVCamera(
pose,
render_resolution,
render_resolution,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
)
cur_out = self.renderer.render(cur_cam)
rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
if self.enable_dino:
features = cur_out["feature"].unsqueeze(0) # [1, 384, 512, 512]
# enhance texture quality with zero123 [not working well]
# if self.opt.guidance_model == 'zero123':
# rgbs = self.guidance.refine(rgbs, [ver], [hor], [0])
# import kiui
# kiui.vis.plot_image(rgbs)
# get coordinate in texture image
pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device)
v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ proj.T
rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution))
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1]
depth = depth.squeeze(0) # [H, W, 1]
alpha = (rast[0, ..., 3:] > 0).float()
uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft) # [1, 512, 512, 2] in [0, 1]
# use normal to produce a back-project mask
normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn)
normal = safe_normalize(normal[0])
# rotated normal (where [0, 0, 1] always faces camera)
rot_normal = normal @ pose[:3, :3]
viewcos = rot_normal[..., [2]]
mask = (alpha > 0) & (viewcos > 0.5) # [H, W, 1]
mask = mask.view(-1)
uvs = uvs.view(-1, 2).clamp(0, 1)[mask]
rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous()
# update texture image
cur_albedo, cur_cnt = mipmap_linear_grid_put_2d(
h, w,
uvs[..., [1, 0]] * 2 - 1,
rgbs,
min_resolution=256,
return_count=True,
)
if self.enable_dino:
features = features.view(features.shape[1], -1).permute(1, 0)[mask].contiguous()
cur_feature, _ = mipmap_linear_grid_put_2d(
h, w,
uvs[..., [1, 0]] * 2 - 1,
features,
min_resolution=256,
return_count=True,
)
# albedo += cur_albedo
# cnt += cur_cnt
mask = cnt.squeeze(-1) < 0.1
albedo[mask] += cur_albedo[mask]
cnt[mask] += cur_cnt[mask]
if self.enable_dino:
feature[mask] += cur_feature[mask]
mask = cnt.squeeze(-1) > 0
albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3)
if self.enable_dino:
feature[mask] = feature[mask] / cnt[mask].repeat(1, feature.shape[-1])
mask = mask.view(h, w)
albedo = albedo.detach().cpu().numpy()
mask = mask.detach().cpu().numpy()
if self.enable_dino:
feature = feature.detach().cpu().numpy()
# dilate texture
from sklearn.neighbors import NearestNeighbors
from scipy.ndimage import binary_dilation, binary_erosion
inpaint_region = binary_dilation(mask, iterations=32)
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=3)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(
search_coords
)
_, indices = knn.kneighbors(inpaint_coords)
albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)]
mesh.albedo = torch.from_numpy(albedo).to(self.device)
# mesh.write(path)
if self.enable_dino:
feature[tuple(inpaint_coords.T)] = feature[tuple(search_coords[indices[:, 0]].T)]
mesh.feature = torch.from_numpy(feature).to(self.device)
mesh.write(path, self.enable_dino)
else:
path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
self.renderer.gaussians.save_ply(path)
print(f"[INFO] save model to {path}.")
# no gui mode
def train(self, iters=500):
if iters > 0:
self.prepare_train()
for i in tqdm.trange(iters):
self.train_step()
# do a last prune
self.renderer.gaussians.prune(min_opacity=0.01, extent=1, max_screen_size=1)
if self.opt.opt_cam:
for cam in self.cams:
try:
self.cam_params[str(cam.index)]["R"] = cam.rotation.tolist()
self.cam_params[str(cam.index)]["T"] = cam.translation.tolist()
except KeyError:
self.cam_params[f"{cam.index:03}"]["R"] = cam.rotation.tolist()
self.cam_params[f"{cam.index:03}"]["T"] = cam.translation.tolist()
with open(self.opt.camera_path.replace(".json", "_updated.json"), "w") as file:
json.dump(self.cam_params, file, indent=4)
self.save_model(mode='model')
self.save_model(mode='geo+tex')
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to the yaml config file")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
gui = GUI(opt)
gui.train(opt.iters)
|