File size: 16,266 Bytes
4f54ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import cv2
import json
import time
import copy
import tqdm
import rembg
import trimesh
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
from kiui.lpips import LPIPS
import sys
sys.path.append('./')
from sparseags.cam_utils import orbit_camera, OrbitCamera, mat2latlon, find_mask_center_and_translate
from sparseags.render_utils.gs_renderer import CustomCamera
from sparseags.mesh_utils.mesh_renderer import Renderer
class GUI:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.gui = opt.gui # enable gui
self.W = opt.W
self.H = opt.H
self.mode = "image"
self.seed = 0
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # update buffer_image
# models
self.device = torch.device("cuda")
self.bg_remover = None
self.guidance_sd = None
self.guidance_zero123 = None
self.guidance_dino = None
self.enable_sd = False
self.enable_zero123 = False
self.enable_dino = False
# renderer
self.renderer = Renderer(opt).to(self.device)
# input image
self.input_img = None
self.input_mask = None
self.input_img_torch = None
self.input_mask_torch = None
self.overlay_input_img = False
self.overlay_input_img_ratio = 0.5
# input text
self.prompt = ""
self.negative_prompt = ""
# training stuff
self.training = False
self.optimizer = None
self.step = 0
self.train_steps = 1 # steps per rendering loop
# load input data
self.load_input(self.opt.camera_path, self.opt.order_path)
# override prompt from cmdline
if self.opt.prompt is not None:
self.prompt = self.opt.prompt
if self.opt.negative_prompt is not None:
self.negative_prompt = self.opt.negative_prompt
def seed_everything(self):
try:
seed = int(self.seed)
except:
seed = np.random.randint(0, 1000000)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
self.last_seed = seed
def prepare_train(self):
self.step = 0
# setup training
self.optimizer = torch.optim.Adam(self.renderer.get_params())
cameras = [CustomCamera(v, index=int(k)) for k, v in self.cam_params.items() if v["flag"]]
cam_centers = [mat2latlon(cam.camera_center) for cam in cameras]
self.opt.ref_polars = [float(cam[0]) for cam in cam_centers]
self.opt.ref_azimuths = [float(cam[1]) for cam in cam_centers]
self.opt.ref_radii = [float(cam[2]) for cam in cam_centers]
self.cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
self.cam = copy.deepcopy(cameras[0])
# Azimuth Mapping: [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1,
# [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
# Elevation Mapping: [0, 90): 0, [-90, 0): 1.
# Principal Point Pool: Tensor (2, 8, 2), where:
# - 2: Elevation groups, 8: Azimuth intervals, 2: x, y coordinates (init to 128).
# we created a "pool" for principal points
# we use these principal points to render image to make sure object is at the center
self.pp_pools = torch.full((2, 8, 2), 128)
# The intrinsics is the average over all cams
self.cam.fx = np.array([cam.fx for cam in cameras], dtype=np.float32).mean()
self.cam.fy = np.array([cam.fy for cam in cameras], dtype=np.float32).mean()
self.cam.cx = np.array([cam.cx for cam in cameras], dtype=np.float32).mean()
self.cam.cy = np.array([cam.cy for cam in cameras], dtype=np.float32).mean()
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
self.enable_dino = self.opt.lambda_dino > 0
# lazy load guidance model
if self.guidance_sd is None and self.enable_sd:
if self.opt.mvdream:
print(f"[INFO] loading MVDream...")
from guidance.mvdream_utils import MVDream
self.guidance_sd = MVDream(self.device)
print(f"[INFO] loaded MVDream!")
else:
print(f"[INFO] loading SD...")
from guidance.sd_utils import StableDiffusion
self.guidance_sd = StableDiffusion(self.device)
print(f"[INFO] loaded SD!")
if self.guidance_zero123 is None and self.enable_zero123:
print(f"[INFO] loading zero123...")
from sparseags.guidance_utils.zero123_6d_utils import Zero123
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
print(f"[INFO] loaded zero123!")
if self.guidance_dino is None and self.enable_dino:
print(f"[INFO] loading dino...")
from guidance.dino_utils import Dino
self.guidance_dino = Dino(self.device, n_components=36, model_key="dinov2_vits14")
self.guidance_dino.fit_pca(self.all_input_images)
print(f"[INFO] loaded dino!")
# input image
if self.input_img is not None:
self.input_img_torch = torch.from_numpy(self.input_img).permute(0, 3, 1, 2).to(self.device)
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(0, 3, 1, 2).to(self.device)
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.input_img_torch_channel_last = self.input_img_torch.permute(0, 2, 3, 1).contiguous()
# prepare embeddings
with torch.no_grad():
if self.enable_sd:
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
if self.enable_zero123:
self.guidance_zero123.get_img_embeds(self.input_img_torch)
if self.enable_dino:
self.guidance_dino.embeddings = self.guidance_dino.get_dino_embeds(self.input_img_torch, upscale=True, reduced=True, learned_up=True) # [8, 18, 18, 36]
def train_step(self):
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
for _ in range(self.train_steps):
self.step += 1
step_ratio = min(1, self.step / self.opt.iters_refine)
loss = 0
### known view
for choice in range(self.num_views):
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
out = self.renderer.render(*self.cams[choice][:2], self.opt.ref_size, self.opt.ref_size, ssaa=ssaa)
# rgb loss
image = out["image"] # [H, W, 3] in [0, 1]
valid_mask = (out["alpha"] > 0).detach()
loss = loss + F.mse_loss(image * valid_mask, self.input_img_torch_channel_last[choice] * valid_mask)
if self.enable_dino:
feature = out["feature"]
loss = loss + F.mse_loss(feature * valid_mask, self.guidance_dino.embeddings[choice] * valid_mask)
### novel view (manual batch)
render_resolution = 512
images = []
vers, hors, radii = [], [], []
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
# min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
# max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
# min_ver = max(min(-30, -30 + np.array(self.opt.ref_polars).min()), -80)
# max_ver = min(max(30, 30 + np.array(self.opt.ref_polars).max()), 80)
min_ver = max(-30 + np.array(self.opt.ref_polars).min(), -80)
max_ver = min(30 + np.array(self.opt.ref_polars).max(), 80)
for _ in range(self.opt.batch_size):
# render random view
ver = np.random.randint(min_ver, max_ver) - self.opt.ref_polars[0]
hor = np.random.randint(-180, 180)
radius = 0
vers.append(ver)
hors.append(hor)
radii.append(radius)
pose = orbit_camera(self.opt.ref_polars[0] + ver, self.opt.ref_azimuths[0] + hor, np.array(self.opt.ref_radii).mean() + radius)
# random render resolution
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
# Azimuth
# [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1
# [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
# Elevation: [0, 90): 0 [-90, 0): 1
idx_ver, idx_hor = int((self.opt.ref_polars[0]+ver) < 0), hor // 45
flag = 0
cx, cy = self.pp_pools[idx_ver, idx_hor+4].tolist()
cnt = 0
while not flag:
self.cam.cx = cx
self.cam.cy = cy
if cnt >= 5:
print(f"[ERROR] Something must be wrong here!")
break
# We modified the field of view. Otherwise, the rendered object will be too small
out = self.renderer.render(pose, self.cam.perspective, render_resolution, render_resolution, ssaa=ssaa)
image = out["image"]
image = image.permute(2, 0, 1).contiguous().unsqueeze(0)
mask = out["alpha"] > 0
mask = mask.permute(2, 0, 1).contiguous().unsqueeze(0)
delta_xy = find_mask_center_and_translate(image.detach(), mask.detach()) / render_resolution * 256
if delta_xy[0].abs() > 10 or delta_xy[1].abs() > 10:
cx -= delta_xy[0]
cy -= delta_xy[1]
self.pp_pools[idx_ver, idx_hor+4] = torch.tensor([cx, cy]) # Update pp_pools
cnt += 1
else:
flag = 1
images.append(image)
images = torch.cat(images, dim=0)
# guidance loss
strength = step_ratio * 0.15 + 0.8
if self.enable_zero123:
v1 = torch.stack([torch.tensor([radius]) + self.opt.ref_radii[0], torch.deg2rad(torch.tensor([ver]) + self.opt.ref_polars[0]), torch.deg2rad(torch.tensor([hor]) + self.opt.ref_azimuths[0])], dim=-1) # polar,azimuth,radius are all actually delta wrt default
v2 = torch.stack([torch.tensor(self.opt.ref_radii), torch.deg2rad(torch.tensor(self.opt.ref_polars)), torch.deg2rad(torch.tensor(self.opt.ref_azimuths))], dim=-1)
angles = torch.rad2deg(self.guidance_zero123.angle_between(v1, v2)).to(self.device)
choice = torch.argmin(angles.squeeze()).item()
cond_RT = {
"c2w": self.cams[choice][0],
"focal_length": self.cams[choice][-1],
}
target_RT = {
"c2w": pose,
"focal_length": np.array(self.cam.fx, self.cam.fy),
}
cam_embed = self.guidance_zero123.get_cam_embeddings_6D(target_RT, cond_RT)
# Additionally add an idx parameter to choose the correct viewpoints
refined_images = self.guidance_zero123.refine(images, cam_embed, strength=strength, idx=choice).float()
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution), mode="bilinear", align_corners=False)
loss = loss + self.opt.lambda_zero123 * F.mse_loss(images, refined_images)
if self.enable_dino:
loss_dino = self.guidance_dino.train_step(
images,
out["feature"].permute(2, 0, 1).contiguous(),
step_ratio=step_ratio if self.opt.anneal_timestep else None
)
loss = loss + self.opt.lambda_dino * loss_dino
# optimize step
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.need_update = True
def load_input(self, camera_path, order_path=None):
# load image
print(f'[INFO] load data from {camera_path}...')
if order_path is not None:
with open(order_path, 'r') as f:
indices = json.load(f)
else:
indices = None
with open(camera_path, 'r') as f:
data = json.load(f)
self.cam_params = {}
for k, v in data.items():
if indices is None:
self.cam_params[k] = data[k]
else:
if int(k) in indices or k in indices:
self.cam_params[k] = data[k]
if self.opt.all_views:
v['flag'] = 1
img_paths = [v["filepath"] for k, v in self.cam_params.items() if v["flag"]]
self.num_views = len(img_paths)
print(f"[INFO] Number of views: {self.num_views}")
for filepath in img_paths:
print(filepath)
images, masks = [], []
for i in range(len(img_paths)):
img = cv2.imread(img_paths[i], cv2.IMREAD_UNCHANGED)
if img.shape[-1] == 3:
if self.bg_remover is None:
self.bg_remover = rembg.new_session()
img = rembg.remove(img, session=self.bg_remover)
img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
input_mask = img[..., 3:]
# white bg
input_img = img[..., :3] * input_mask + (1 - input_mask)
# bgr to rgb
input_img = input_img[..., ::-1].copy()
images.append(input_img), masks.append(input_mask)
images = np.stack(images, axis=0)
masks = np.stack(masks, axis=0)
self.input_img = images[:self.num_views]
self.input_mask = masks[:self.num_views]
self.all_input_images = images
def save_model(self):
os.makedirs(self.opt.outdir, exist_ok=True)
path = os.path.join(self.opt.outdir, self.opt.save_path + '.' + self.opt.mesh_format)
self.renderer.export_mesh(path)
print(f"[INFO] save model to {path}.")
# no gui mode
def train(self, iters=500):
if iters > 0:
self.prepare_train()
for i in tqdm.trange(iters):
self.train_step()
# save
self.save_model()
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to the yaml config file")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
# auto find mesh from stage 1
if opt.mesh is None:
default_path = os.path.join(opt.outdir, opt.save_path + '_mesh.' + opt.mesh_format)
if os.path.exists(default_path):
opt.mesh = default_path
else:
raise ValueError(f"Cannot find mesh from {default_path}, must specify --mesh explicitly!")
gui = GUI(opt)
gui.train(opt.iters_refine)
|