File size: 16,266 Bytes
4f54ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import cv2
import json
import time
import copy
import tqdm
import rembg
import trimesh
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd

from kiui.lpips import LPIPS

import sys
sys.path.append('./')

from sparseags.cam_utils import orbit_camera, OrbitCamera, mat2latlon, find_mask_center_and_translate
from sparseags.render_utils.gs_renderer import CustomCamera
from sparseags.mesh_utils.mesh_renderer import Renderer


class GUI:
    def __init__(self, opt):
        self.opt = opt  # shared with the trainer's opt to support in-place modification of rendering parameters.
        self.gui = opt.gui  # enable gui
        self.W = opt.W
        self.H = opt.H

        self.mode = "image"
        self.seed = 0

        self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
        self.need_update = True  # update buffer_image

        # models
        self.device = torch.device("cuda")
        self.bg_remover = None

        self.guidance_sd = None
        self.guidance_zero123 = None
        self.guidance_dino = None

        self.enable_sd = False
        self.enable_zero123 = False
        self.enable_dino = False

        # renderer
        self.renderer = Renderer(opt).to(self.device)

        # input image
        self.input_img = None
        self.input_mask = None
        self.input_img_torch = None
        self.input_mask_torch = None
        self.overlay_input_img = False
        self.overlay_input_img_ratio = 0.5

        # input text
        self.prompt = ""
        self.negative_prompt = ""

        # training stuff
        self.training = False
        self.optimizer = None
        self.step = 0
        self.train_steps = 1  # steps per rendering loop
        
        # load input data
        self.load_input(self.opt.camera_path, self.opt.order_path)
        
        # override prompt from cmdline
        if self.opt.prompt is not None:
            self.prompt = self.opt.prompt
        if self.opt.negative_prompt is not None:
            self.negative_prompt = self.opt.negative_prompt

    def seed_everything(self):
        try:
            seed = int(self.seed)
        except:
            seed = np.random.randint(0, 1000000)

        os.environ["PYTHONHASHSEED"] = str(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = True

        self.last_seed = seed

    def prepare_train(self):

        self.step = 0

        # setup training
        self.optimizer = torch.optim.Adam(self.renderer.get_params())

        cameras = [CustomCamera(v, index=int(k)) for k, v in self.cam_params.items() if v["flag"]]
        cam_centers = [mat2latlon(cam.camera_center) for cam in cameras]
        self.opt.ref_polars = [float(cam[0]) for cam in cam_centers]
        self.opt.ref_azimuths = [float(cam[1]) for cam in cam_centers]
        self.opt.ref_radii = [float(cam[2]) for cam in cam_centers]
        self.cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
        self.cam = copy.deepcopy(cameras[0])
        
        # Azimuth Mapping: [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1,
        #                   [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
        # Elevation Mapping: [0, 90): 0, [-90, 0): 1.

        # Principal Point Pool: Tensor (2, 8, 2), where:
        #   - 2: Elevation groups, 8: Azimuth intervals, 2: x, y coordinates (init to 128).

        # we created a "pool" for principal points
        # we use these principal points to render image to make sure object is at the center
        self.pp_pools = torch.full((2, 8, 2), 128)

        # The intrinsics is the average over all cams
        self.cam.fx = np.array([cam.fx for cam in cameras], dtype=np.float32).mean()
        self.cam.fy = np.array([cam.fy for cam in cameras], dtype=np.float32).mean()
        self.cam.cx = np.array([cam.cx for cam in cameras], dtype=np.float32).mean()
        self.cam.cy = np.array([cam.cy for cam in cameras], dtype=np.float32).mean()
        
        self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
        self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
        self.enable_dino = self.opt.lambda_dino > 0

        # lazy load guidance model
        if self.guidance_sd is None and self.enable_sd:
            if self.opt.mvdream:
                print(f"[INFO] loading MVDream...")
                from guidance.mvdream_utils import MVDream
                self.guidance_sd = MVDream(self.device)
                print(f"[INFO] loaded MVDream!")
            else:
                print(f"[INFO] loading SD...")
                from guidance.sd_utils import StableDiffusion
                self.guidance_sd = StableDiffusion(self.device)
                print(f"[INFO] loaded SD!")

        if self.guidance_zero123 is None and self.enable_zero123:
            print(f"[INFO] loading zero123...")
            from sparseags.guidance_utils.zero123_6d_utils import Zero123
            self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
            print(f"[INFO] loaded zero123!")

        if self.guidance_dino is None and self.enable_dino:
            print(f"[INFO] loading dino...")
            from guidance.dino_utils import Dino
            self.guidance_dino = Dino(self.device, n_components=36, model_key="dinov2_vits14")
            self.guidance_dino.fit_pca(self.all_input_images)
            print(f"[INFO] loaded dino!")

        # input image
        if self.input_img is not None:
            self.input_img_torch = torch.from_numpy(self.input_img).permute(0, 3, 1, 2).to(self.device)
            self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)

            self.input_mask_torch = torch.from_numpy(self.input_mask).permute(0, 3, 1, 2).to(self.device)
            self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
            self.input_img_torch_channel_last = self.input_img_torch.permute(0, 2, 3, 1).contiguous()

        # prepare embeddings
        with torch.no_grad():

            if self.enable_sd:
                self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])

            if self.enable_zero123:
                self.guidance_zero123.get_img_embeds(self.input_img_torch)

            if self.enable_dino:
                self.guidance_dino.embeddings = self.guidance_dino.get_dino_embeds(self.input_img_torch, upscale=True, reduced=True, learned_up=True)  # [8, 18, 18, 36]

    def train_step(self):
        starter = torch.cuda.Event(enable_timing=True)
        ender = torch.cuda.Event(enable_timing=True)
        starter.record()


        for _ in range(self.train_steps):

            self.step += 1
            step_ratio = min(1, self.step / self.opt.iters_refine)

            loss = 0

            ### known view
            for choice in range(self.num_views):
                ssaa = min(2.0, max(0.125, 2 * np.random.random()))
                out = self.renderer.render(*self.cams[choice][:2], self.opt.ref_size, self.opt.ref_size, ssaa=ssaa)

                # rgb loss
                image = out["image"] # [H, W, 3] in [0, 1]
                valid_mask = (out["alpha"] > 0).detach()
                loss = loss + F.mse_loss(image * valid_mask, self.input_img_torch_channel_last[choice] * valid_mask)

                if self.enable_dino:
                    feature = out["feature"]
                    loss = loss + F.mse_loss(feature * valid_mask, self.guidance_dino.embeddings[choice] * valid_mask)

            ### novel view (manual batch)
            render_resolution = 512
            images = []
            vers, hors, radii = [], [], []
            # avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
            # min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
            # max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
            # min_ver = max(min(-30, -30 + np.array(self.opt.ref_polars).min()), -80)
            # max_ver = min(max(30, 30 + np.array(self.opt.ref_polars).max()), 80)
            min_ver = max(-30 + np.array(self.opt.ref_polars).min(), -80)
            max_ver = min(30 + np.array(self.opt.ref_polars).max(), 80)

            for _ in range(self.opt.batch_size):

                # render random view
                ver = np.random.randint(min_ver, max_ver) - self.opt.ref_polars[0]
                hor = np.random.randint(-180, 180)
                radius = 0

                vers.append(ver)
                hors.append(hor)
                radii.append(radius)

                pose = orbit_camera(self.opt.ref_polars[0] + ver, self.opt.ref_azimuths[0] + hor, np.array(self.opt.ref_radii).mean() + radius)

                # random render resolution
                ssaa = min(2.0, max(0.125, 2 * np.random.random()))

                # Azimuth
                # [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1
                # [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3. 
                # Elevation: [0, 90): 0 [-90, 0): 1
                idx_ver, idx_hor = int((self.opt.ref_polars[0]+ver) < 0), hor // 45

                flag = 0
                cx, cy = self.pp_pools[idx_ver, idx_hor+4].tolist() 
                cnt = 0

                while not flag:

                    self.cam.cx = cx
                    self.cam.cy = cy

                    if cnt >= 5:
                        print(f"[ERROR] Something must be wrong here!")
                        break

                    # We modified the field of view. Otherwise, the rendered object will be too small
                    out = self.renderer.render(pose, self.cam.perspective, render_resolution, render_resolution, ssaa=ssaa)

                    image = out["image"]
                    image = image.permute(2, 0, 1).contiguous().unsqueeze(0)
                    mask = out["alpha"] > 0
                    mask = mask.permute(2, 0, 1).contiguous().unsqueeze(0)
                    delta_xy = find_mask_center_and_translate(image.detach(), mask.detach()) / render_resolution * 256

                    if delta_xy[0].abs() > 10 or delta_xy[1].abs() > 10:
                        cx -= delta_xy[0]
                        cy -= delta_xy[1]
                        self.pp_pools[idx_ver, idx_hor+4] = torch.tensor([cx, cy])  # Update pp_pools
                        cnt += 1
                    else:
                        flag = 1

                images.append(image)

            images = torch.cat(images, dim=0)

            # guidance loss
            strength = step_ratio * 0.15 + 0.8
            if self.enable_zero123:
                v1 = torch.stack([torch.tensor([radius]) + self.opt.ref_radii[0], torch.deg2rad(torch.tensor([ver]) + self.opt.ref_polars[0]), torch.deg2rad(torch.tensor([hor]) + self.opt.ref_azimuths[0])], dim=-1)   # polar,azimuth,radius are all actually delta wrt default
                v2 = torch.stack([torch.tensor(self.opt.ref_radii), torch.deg2rad(torch.tensor(self.opt.ref_polars)), torch.deg2rad(torch.tensor(self.opt.ref_azimuths))], dim=-1)
                angles = torch.rad2deg(self.guidance_zero123.angle_between(v1, v2)).to(self.device)
                choice = torch.argmin(angles.squeeze()).item()

                cond_RT = {
                    "c2w": self.cams[choice][0],
                    "focal_length": self.cams[choice][-1],
                }
                target_RT = {
                    "c2w": pose,
                    "focal_length": np.array(self.cam.fx, self.cam.fy),
                }
                cam_embed = self.guidance_zero123.get_cam_embeddings_6D(target_RT, cond_RT)

                # Additionally add an idx parameter to choose the correct viewpoints
                refined_images = self.guidance_zero123.refine(images, cam_embed, strength=strength, idx=choice).float()
                refined_images = F.interpolate(refined_images, (render_resolution, render_resolution), mode="bilinear", align_corners=False)
                loss = loss + self.opt.lambda_zero123 * F.mse_loss(images, refined_images)

            if self.enable_dino:
                loss_dino = self.guidance_dino.train_step(
                    images, 
                    out["feature"].permute(2, 0, 1).contiguous(),
                    step_ratio=step_ratio if self.opt.anneal_timestep else None
                )
                loss = loss + self.opt.lambda_dino * loss_dino

            # optimize step
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender)

        self.need_update = True
    
    def load_input(self, camera_path, order_path=None):
        # load image
        print(f'[INFO] load data from {camera_path}...')

        if order_path is not None:
            with open(order_path, 'r') as f:
                indices = json.load(f)
        else:
            indices = None

        with open(camera_path, 'r') as f:
            data = json.load(f)

        self.cam_params = {}
        for k, v in data.items():
            if indices is None:
                self.cam_params[k] = data[k]
            else:
                if int(k) in indices or k in indices:
                    self.cam_params[k] = data[k]

            if self.opt.all_views:
                v['flag'] = 1

        img_paths = [v["filepath"] for k, v in self.cam_params.items() if v["flag"]]
        self.num_views = len(img_paths)
        print(f"[INFO] Number of views: {self.num_views}")

        for filepath in img_paths:
            print(filepath)

        images, masks = [], []

        for i in range(len(img_paths)):
            img = cv2.imread(img_paths[i], cv2.IMREAD_UNCHANGED)
            if img.shape[-1] == 3:
                if self.bg_remover is None:
                    self.bg_remover = rembg.new_session()
                img = rembg.remove(img, session=self.bg_remover)

            img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
            img = img.astype(np.float32) / 255.0

            input_mask = img[..., 3:]
            # white bg
            input_img = img[..., :3] * input_mask + (1 - input_mask)
            # bgr to rgb
            input_img = input_img[..., ::-1].copy()

            images.append(input_img), masks.append(input_mask)

        images = np.stack(images, axis=0)
        masks = np.stack(masks, axis=0)
        self.input_img = images[:self.num_views]
        self.input_mask = masks[:self.num_views]
        self.all_input_images = images
    
    def save_model(self):
        os.makedirs(self.opt.outdir, exist_ok=True)
    
        path = os.path.join(self.opt.outdir, self.opt.save_path + '.' + self.opt.mesh_format)
        self.renderer.export_mesh(path)

        print(f"[INFO] save model to {path}.")
    
    # no gui mode
    def train(self, iters=500):
        if iters > 0:
            self.prepare_train()
            for i in tqdm.trange(iters):
                self.train_step()
        # save
        self.save_model()
        

if __name__ == "__main__":
    import argparse
    from omegaconf import OmegaConf

    parser = argparse.ArgumentParser()
    parser.add_argument("--config", required=True, help="path to the yaml config file")
    args, extras = parser.parse_known_args()

    # override default config from cli
    opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))

    # auto find mesh from stage 1
    if opt.mesh is None:
        default_path = os.path.join(opt.outdir, opt.save_path + '_mesh.' + opt.mesh_format)
        if os.path.exists(default_path):
            opt.mesh = default_path
        else:
            raise ValueError(f"Cannot find mesh from {default_path}, must specify --mesh explicitly!")

    gui = GUI(opt)

    gui.train(opt.iters_refine)