|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import os.path as osp |
|
import re |
|
from tqdm import tqdm |
|
import numpy as np |
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" |
|
import cv2 |
|
|
|
import path_to_root |
|
from dust3r.utils.parallel import parallel_threads |
|
from dust3r.datasets.utils import cropping |
|
|
|
|
|
def get_parser(): |
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--blendedmvs_dir', required=True) |
|
parser.add_argument('--precomputed_pairs', required=True) |
|
parser.add_argument('--output_dir', default='data/blendedmvs_processed') |
|
return parser |
|
|
|
|
|
def main(db_root, pairs_path, output_dir): |
|
print('>> Listing all sequences') |
|
sequences = [f for f in os.listdir(db_root) if len(f) == 24] |
|
|
|
assert sequences, f'did not found any sequences at {db_root}' |
|
print(f' (found {len(sequences)} sequences)') |
|
|
|
for i, seq in enumerate(tqdm(sequences)): |
|
out_dir = osp.join(output_dir, seq) |
|
os.makedirs(out_dir, exist_ok=True) |
|
|
|
|
|
root = osp.join(db_root, seq) |
|
cam_dir = osp.join(root, 'cams') |
|
func_args = [(root, f[:-8], out_dir) for f in os.listdir(cam_dir) if not f.startswith('pair')] |
|
parallel_threads(load_crop_and_save, func_args, star_args=True, leave=False) |
|
|
|
|
|
pairs = np.load(pairs_path) |
|
for seqh, seql, img1, img2, score in tqdm(pairs): |
|
for view_index in [img1, img2]: |
|
impath = osp.join(output_dir, f"{seqh:08x}{seql:016x}", f"{view_index:08n}.jpg") |
|
assert osp.isfile(impath), f'missing image at {impath=}' |
|
|
|
print(f'>> Done, saved everything in {output_dir}/') |
|
|
|
|
|
def load_crop_and_save(root, img, out_dir): |
|
if osp.isfile(osp.join(out_dir, img + '.npz')): |
|
return |
|
|
|
|
|
intrinsics_in, R_camin2world, t_camin2world = _load_pose(osp.join(root, 'cams', img + '_cam.txt')) |
|
color_image_in = cv2.cvtColor(cv2.imread(osp.join(root, 'blended_images', img + |
|
'.jpg'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) |
|
depthmap_in = load_pfm_file(osp.join(root, 'rendered_depth_maps', img + '.pfm')) |
|
|
|
|
|
H, W = color_image_in.shape[:2] |
|
assert H * 4 == W * 3 |
|
image, depthmap, intrinsics_out, R_in2out = _crop_image(intrinsics_in, color_image_in, depthmap_in, (512, 384)) |
|
|
|
|
|
image.save(osp.join(out_dir, img + '.jpg'), quality=80) |
|
cv2.imwrite(osp.join(out_dir, img + '.exr'), depthmap) |
|
|
|
|
|
R_camout2world = R_camin2world @ R_in2out.T |
|
t_camout2world = t_camin2world |
|
np.savez(osp.join(out_dir, img + '.npz'), intrinsics=intrinsics_out, |
|
R_cam2world=R_camout2world, t_cam2world=t_camout2world) |
|
|
|
|
|
def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(800, 800)): |
|
image, depthmap, intrinsics_out = cropping.rescale_image_depthmap( |
|
color_image_in, depthmap_in, intrinsics_in, resolution_out) |
|
R_in2out = np.eye(3) |
|
return image, depthmap, intrinsics_out, R_in2out |
|
|
|
|
|
def _load_pose(path, ret_44=False): |
|
f = open(path) |
|
RT = np.loadtxt(f, skiprows=1, max_rows=4, dtype=np.float32) |
|
assert RT.shape == (4, 4) |
|
RT = np.linalg.inv(RT) |
|
|
|
K = np.loadtxt(f, skiprows=2, max_rows=3, dtype=np.float32) |
|
assert K.shape == (3, 3) |
|
|
|
if ret_44: |
|
return K, RT |
|
return K, RT[:3, :3], RT[:3, 3] |
|
|
|
|
|
def load_pfm_file(file_path): |
|
with open(file_path, 'rb') as file: |
|
header = file.readline().decode('UTF-8').strip() |
|
|
|
if header == 'PF': |
|
is_color = True |
|
elif header == 'Pf': |
|
is_color = False |
|
else: |
|
raise ValueError('The provided file is not a valid PFM file.') |
|
|
|
dimensions = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8')) |
|
if dimensions: |
|
img_width, img_height = map(int, dimensions.groups()) |
|
else: |
|
raise ValueError('Invalid PFM header format.') |
|
|
|
endian_scale = float(file.readline().decode('UTF-8').strip()) |
|
if endian_scale < 0: |
|
dtype = '<f' |
|
else: |
|
dtype = '>f' |
|
|
|
data_buffer = file.read() |
|
img_data = np.frombuffer(data_buffer, dtype=dtype) |
|
|
|
if is_color: |
|
img_data = np.reshape(img_data, (img_height, img_width, 3)) |
|
else: |
|
img_data = np.reshape(img_data, (img_height, img_width)) |
|
|
|
img_data = cv2.flip(img_data, 0) |
|
|
|
return img_data |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
main(args.blendedmvs_dir, args.precomputed_pairs, args.output_dir) |
|
|