|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import random |
|
import gzip |
|
import json |
|
import os |
|
import os.path as osp |
|
|
|
import torch |
|
import PIL.Image |
|
import numpy as np |
|
import cv2 |
|
|
|
from tqdm.auto import tqdm |
|
import matplotlib.pyplot as plt |
|
|
|
import path_to_root |
|
import dust3r.datasets.utils.cropping as cropping |
|
|
|
|
|
CATEGORIES = [ |
|
"apple", "backpack", "ball", "banana", "baseballbat", "baseballglove", |
|
"bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot", |
|
"cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag", |
|
"hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave", |
|
"motorcycle", |
|
"mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich", |
|
"skateboard", "stopsign", |
|
"suitcase", "teddybear", "toaster", "toilet", "toybus", |
|
"toyplane", "toytrain", "toytruck", "tv", |
|
"umbrella", "vase", "wineglass", |
|
] |
|
CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)} |
|
|
|
SINGLE_SEQUENCE_CATEGORIES = sorted(set(CATEGORIES) - set(["microwave", "stopsign", "tv"])) |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--category", type=str, default=None) |
|
parser.add_argument('--single_sequence_subset', default=False, action='store_true', |
|
help="prepare the single_sequence_subset instead.") |
|
parser.add_argument("--output_dir", type=str, default="data/co3d_processed") |
|
parser.add_argument("--co3d_dir", type=str, required=True) |
|
parser.add_argument("--num_sequences_per_object", type=int, default=50) |
|
parser.add_argument("--seed", type=int, default=42) |
|
parser.add_argument("--min_quality", type=float, default=0.5, help="Minimum viewpoint quality score.") |
|
|
|
parser.add_argument("--img_size", type=int, default=512, |
|
help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size")) |
|
return parser |
|
|
|
|
|
def convert_ndc_to_pinhole(focal_length, principal_point, image_size): |
|
focal_length = np.array(focal_length) |
|
principal_point = np.array(principal_point) |
|
image_size_wh = np.array([image_size[1], image_size[0]]) |
|
half_image_size = image_size_wh / 2 |
|
rescale = half_image_size.min() |
|
principal_point_px = half_image_size - principal_point * rescale |
|
focal_length_px = focal_length * rescale |
|
fx, fy = focal_length_px[0], focal_length_px[1] |
|
cx, cy = principal_point_px[0], principal_point_px[1] |
|
K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32) |
|
return K |
|
|
|
|
|
def opencv_from_cameras_projection(R, T, focal, p0, image_size): |
|
R = torch.from_numpy(R)[None, :, :] |
|
T = torch.from_numpy(T)[None, :] |
|
focal = torch.from_numpy(focal)[None, :] |
|
p0 = torch.from_numpy(p0)[None, :] |
|
image_size = torch.from_numpy(image_size)[None, :] |
|
|
|
R_pytorch3d = R.clone() |
|
T_pytorch3d = T.clone() |
|
focal_pytorch3d = focal |
|
p0_pytorch3d = p0 |
|
T_pytorch3d[:, :2] *= -1 |
|
R_pytorch3d[:, :, :2] *= -1 |
|
tvec = T_pytorch3d |
|
R = R_pytorch3d.permute(0, 2, 1) |
|
|
|
|
|
image_size_wh = image_size.to(R).flip(dims=(1,)) |
|
|
|
|
|
scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0 |
|
scale = scale.expand(-1, 2) |
|
c0 = image_size_wh / 2.0 |
|
|
|
principal_point = -p0_pytorch3d * scale + c0 |
|
focal_length = focal_pytorch3d * scale |
|
|
|
camera_matrix = torch.zeros_like(R) |
|
camera_matrix[:, :2, 2] = principal_point |
|
camera_matrix[:, 2, 2] = 1.0 |
|
camera_matrix[:, 0, 0] = focal_length[:, 0] |
|
camera_matrix[:, 1, 1] = focal_length[:, 1] |
|
return R[0], tvec[0], camera_matrix[0] |
|
|
|
|
|
def get_set_list(category_dir, split, is_single_sequence_subset=False): |
|
listfiles = os.listdir(osp.join(category_dir, "set_lists")) |
|
if is_single_sequence_subset: |
|
|
|
subset_list_files = [f for f in listfiles if "manyview_dev" in f] |
|
else: |
|
subset_list_files = [f for f in listfiles if f"fewview_train" in f] |
|
|
|
sequences_all = [] |
|
for subset_list_file in subset_list_files: |
|
with open(osp.join(category_dir, "set_lists", subset_list_file)) as f: |
|
subset_lists_data = json.load(f) |
|
sequences_all.extend(subset_lists_data[split]) |
|
|
|
return sequences_all |
|
|
|
|
|
def prepare_sequences(category, co3d_dir, output_dir, img_size, split, min_quality, max_num_sequences_per_object, |
|
seed, is_single_sequence_subset=False): |
|
random.seed(seed) |
|
category_dir = osp.join(co3d_dir, category) |
|
category_output_dir = osp.join(output_dir, category) |
|
sequences_all = get_set_list(category_dir, split, is_single_sequence_subset) |
|
sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all)) |
|
|
|
frame_file = osp.join(category_dir, "frame_annotations.jgz") |
|
sequence_file = osp.join(category_dir, "sequence_annotations.jgz") |
|
|
|
with gzip.open(frame_file, "r") as fin: |
|
frame_data = json.loads(fin.read()) |
|
with gzip.open(sequence_file, "r") as fin: |
|
sequence_data = json.loads(fin.read()) |
|
|
|
frame_data_processed = {} |
|
for f_data in frame_data: |
|
sequence_name = f_data["sequence_name"] |
|
frame_data_processed.setdefault(sequence_name, {})[f_data["frame_number"]] = f_data |
|
|
|
good_quality_sequences = set() |
|
for seq_data in sequence_data: |
|
if seq_data["viewpoint_quality_score"] > min_quality: |
|
good_quality_sequences.add(seq_data["sequence_name"]) |
|
|
|
sequences_numbers = [seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences] |
|
if len(sequences_numbers) < max_num_sequences_per_object: |
|
selected_sequences_numbers = sequences_numbers |
|
else: |
|
selected_sequences_numbers = random.sample(sequences_numbers, max_num_sequences_per_object) |
|
|
|
selected_sequences_numbers_dict = {seq_name: [] for seq_name in selected_sequences_numbers} |
|
sequences_all = [(seq_name, frame_number, filepath) |
|
for seq_name, frame_number, filepath in sequences_all |
|
if seq_name in selected_sequences_numbers_dict] |
|
|
|
for seq_name, frame_number, filepath in tqdm(sequences_all): |
|
frame_idx = int(filepath.split('/')[-1][5:-4]) |
|
selected_sequences_numbers_dict[seq_name].append(frame_idx) |
|
mask_path = filepath.replace("images", "masks").replace(".jpg", ".png") |
|
frame_data = frame_data_processed[seq_name][frame_number] |
|
focal_length = frame_data["viewpoint"]["focal_length"] |
|
principal_point = frame_data["viewpoint"]["principal_point"] |
|
image_size = frame_data["image"]["size"] |
|
K = convert_ndc_to_pinhole(focal_length, principal_point, image_size) |
|
R, tvec, camera_intrinsics = opencv_from_cameras_projection(np.array(frame_data["viewpoint"]["R"]), |
|
np.array(frame_data["viewpoint"]["T"]), |
|
np.array(focal_length), |
|
np.array(principal_point), |
|
np.array(image_size)) |
|
|
|
frame_data = frame_data_processed[seq_name][frame_number] |
|
depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"]) |
|
assert frame_data["depth"]["scale_adjustment"] == 1.0 |
|
image_path = os.path.join(co3d_dir, filepath) |
|
mask_path_full = os.path.join(co3d_dir, mask_path) |
|
|
|
input_rgb_image = PIL.Image.open(image_path).convert('RGB') |
|
input_mask = plt.imread(mask_path_full) |
|
|
|
with PIL.Image.open(depth_path) as depth_pil: |
|
|
|
|
|
input_depthmap = ( |
|
np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) |
|
.astype(np.float32) |
|
.reshape((depth_pil.size[1], depth_pil.size[0]))) |
|
depth_mask = np.stack((input_depthmap, input_mask), axis=-1) |
|
H, W = input_depthmap.shape |
|
|
|
camera_intrinsics = camera_intrinsics.numpy() |
|
cx, cy = camera_intrinsics[:2, 2].round().astype(int) |
|
min_margin_x = min(cx, W - cx) |
|
min_margin_y = min(cy, H - cy) |
|
|
|
|
|
l, t = cx - min_margin_x, cy - min_margin_y |
|
r, b = cx + min_margin_x, cy + min_margin_y |
|
crop_bbox = (l, t, r, b) |
|
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap( |
|
input_rgb_image, depth_mask, camera_intrinsics, crop_bbox) |
|
|
|
|
|
scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 |
|
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) |
|
if max(output_resolution) < img_size: |
|
|
|
scale_final = (img_size / max(H, W)) + 1e-8 |
|
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) |
|
|
|
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap( |
|
input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution) |
|
input_depthmap = depth_mask[:, :, 0] |
|
input_mask = depth_mask[:, :, 1] |
|
|
|
|
|
camera_pose = np.eye(4, dtype=np.float32) |
|
camera_pose[:3, :3] = R |
|
camera_pose[:3, 3] = tvec |
|
camera_pose = np.linalg.inv(camera_pose) |
|
|
|
|
|
save_img_path = os.path.join(output_dir, filepath) |
|
save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"]) |
|
save_mask_path = os.path.join(output_dir, mask_path) |
|
os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) |
|
os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) |
|
os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) |
|
|
|
input_rgb_image.save(save_img_path) |
|
scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(np.uint16) |
|
cv2.imwrite(save_depth_path, scaled_depth_map) |
|
cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) |
|
|
|
save_meta_path = save_img_path.replace('jpg', 'npz') |
|
np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics, |
|
camera_pose=camera_pose, maximum_depth=np.max(input_depthmap)) |
|
|
|
return selected_sequences_numbers_dict |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
assert args.co3d_dir != args.output_dir |
|
if args.category is None: |
|
if args.single_sequence_subset: |
|
categories = SINGLE_SEQUENCE_CATEGORIES |
|
else: |
|
categories = CATEGORIES |
|
else: |
|
categories = [args.category] |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
for split in ['train', 'test']: |
|
selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json') |
|
if os.path.isfile(selected_sequences_path): |
|
continue |
|
|
|
all_selected_sequences = {} |
|
for category in categories: |
|
category_output_dir = osp.join(args.output_dir, category) |
|
os.makedirs(category_output_dir, exist_ok=True) |
|
category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json') |
|
if os.path.isfile(category_selected_sequences_path): |
|
with open(category_selected_sequences_path, 'r') as fid: |
|
category_selected_sequences = json.load(fid) |
|
else: |
|
print(f"Processing {split} - category = {category}") |
|
category_selected_sequences = prepare_sequences( |
|
category=category, |
|
co3d_dir=args.co3d_dir, |
|
output_dir=args.output_dir, |
|
img_size=args.img_size, |
|
split=split, |
|
min_quality=args.min_quality, |
|
max_num_sequences_per_object=args.num_sequences_per_object, |
|
seed=args.seed + CATEGORIES_IDX[category], |
|
is_single_sequence_subset=args.single_sequence_subset |
|
) |
|
with open(category_selected_sequences_path, 'w') as file: |
|
json.dump(category_selected_sequences, file) |
|
|
|
all_selected_sequences[category] = category_selected_sequences |
|
with open(selected_sequences_path, 'w') as file: |
|
json.dump(all_selected_sequences, file) |
|
|