SparseAGS / sparseags /main_stage2.py
qitaoz's picture
init commit
4f54ccd verified
raw
history blame
16.3 kB
import os
import cv2
import json
import time
import copy
import tqdm
import rembg
import trimesh
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
from kiui.lpips import LPIPS
import sys
sys.path.append('./')
from sparseags.cam_utils import orbit_camera, OrbitCamera, mat2latlon, find_mask_center_and_translate
from sparseags.render_utils.gs_renderer import CustomCamera
from sparseags.mesh_utils.mesh_renderer import Renderer
class GUI:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.gui = opt.gui # enable gui
self.W = opt.W
self.H = opt.H
self.mode = "image"
self.seed = 0
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # update buffer_image
# models
self.device = torch.device("cuda")
self.bg_remover = None
self.guidance_sd = None
self.guidance_zero123 = None
self.guidance_dino = None
self.enable_sd = False
self.enable_zero123 = False
self.enable_dino = False
# renderer
self.renderer = Renderer(opt).to(self.device)
# input image
self.input_img = None
self.input_mask = None
self.input_img_torch = None
self.input_mask_torch = None
self.overlay_input_img = False
self.overlay_input_img_ratio = 0.5
# input text
self.prompt = ""
self.negative_prompt = ""
# training stuff
self.training = False
self.optimizer = None
self.step = 0
self.train_steps = 1 # steps per rendering loop
# load input data
self.load_input(self.opt.camera_path, self.opt.order_path)
# override prompt from cmdline
if self.opt.prompt is not None:
self.prompt = self.opt.prompt
if self.opt.negative_prompt is not None:
self.negative_prompt = self.opt.negative_prompt
def seed_everything(self):
try:
seed = int(self.seed)
except:
seed = np.random.randint(0, 1000000)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
self.last_seed = seed
def prepare_train(self):
self.step = 0
# setup training
self.optimizer = torch.optim.Adam(self.renderer.get_params())
cameras = [CustomCamera(v, index=int(k)) for k, v in self.cam_params.items() if v["flag"]]
cam_centers = [mat2latlon(cam.camera_center) for cam in cameras]
self.opt.ref_polars = [float(cam[0]) for cam in cam_centers]
self.opt.ref_azimuths = [float(cam[1]) for cam in cam_centers]
self.opt.ref_radii = [float(cam[2]) for cam in cam_centers]
self.cams = [(cam.c2w, cam.perspective, cam.focal_length) for cam in cameras]
self.cam = copy.deepcopy(cameras[0])
# Azimuth Mapping: [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1,
# [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
# Elevation Mapping: [0, 90): 0, [-90, 0): 1.
# Principal Point Pool: Tensor (2, 8, 2), where:
# - 2: Elevation groups, 8: Azimuth intervals, 2: x, y coordinates (init to 128).
# we created a "pool" for principal points
# we use these principal points to render image to make sure object is at the center
self.pp_pools = torch.full((2, 8, 2), 128)
# The intrinsics is the average over all cams
self.cam.fx = np.array([cam.fx for cam in cameras], dtype=np.float32).mean()
self.cam.fy = np.array([cam.fy for cam in cameras], dtype=np.float32).mean()
self.cam.cx = np.array([cam.cx for cam in cameras], dtype=np.float32).mean()
self.cam.cy = np.array([cam.cy for cam in cameras], dtype=np.float32).mean()
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
self.enable_dino = self.opt.lambda_dino > 0
# lazy load guidance model
if self.guidance_sd is None and self.enable_sd:
if self.opt.mvdream:
print(f"[INFO] loading MVDream...")
from guidance.mvdream_utils import MVDream
self.guidance_sd = MVDream(self.device)
print(f"[INFO] loaded MVDream!")
else:
print(f"[INFO] loading SD...")
from guidance.sd_utils import StableDiffusion
self.guidance_sd = StableDiffusion(self.device)
print(f"[INFO] loaded SD!")
if self.guidance_zero123 is None and self.enable_zero123:
print(f"[INFO] loading zero123...")
from sparseags.guidance_utils.zero123_6d_utils import Zero123
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
print(f"[INFO] loaded zero123!")
if self.guidance_dino is None and self.enable_dino:
print(f"[INFO] loading dino...")
from guidance.dino_utils import Dino
self.guidance_dino = Dino(self.device, n_components=36, model_key="dinov2_vits14")
self.guidance_dino.fit_pca(self.all_input_images)
print(f"[INFO] loaded dino!")
# input image
if self.input_img is not None:
self.input_img_torch = torch.from_numpy(self.input_img).permute(0, 3, 1, 2).to(self.device)
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(0, 3, 1, 2).to(self.device)
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.input_img_torch_channel_last = self.input_img_torch.permute(0, 2, 3, 1).contiguous()
# prepare embeddings
with torch.no_grad():
if self.enable_sd:
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
if self.enable_zero123:
self.guidance_zero123.get_img_embeds(self.input_img_torch)
if self.enable_dino:
self.guidance_dino.embeddings = self.guidance_dino.get_dino_embeds(self.input_img_torch, upscale=True, reduced=True, learned_up=True) # [8, 18, 18, 36]
def train_step(self):
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
for _ in range(self.train_steps):
self.step += 1
step_ratio = min(1, self.step / self.opt.iters_refine)
loss = 0
### known view
for choice in range(self.num_views):
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
out = self.renderer.render(*self.cams[choice][:2], self.opt.ref_size, self.opt.ref_size, ssaa=ssaa)
# rgb loss
image = out["image"] # [H, W, 3] in [0, 1]
valid_mask = (out["alpha"] > 0).detach()
loss = loss + F.mse_loss(image * valid_mask, self.input_img_torch_channel_last[choice] * valid_mask)
if self.enable_dino:
feature = out["feature"]
loss = loss + F.mse_loss(feature * valid_mask, self.guidance_dino.embeddings[choice] * valid_mask)
### novel view (manual batch)
render_resolution = 512
images = []
vers, hors, radii = [], [], []
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
# min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
# max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
# min_ver = max(min(-30, -30 + np.array(self.opt.ref_polars).min()), -80)
# max_ver = min(max(30, 30 + np.array(self.opt.ref_polars).max()), 80)
min_ver = max(-30 + np.array(self.opt.ref_polars).min(), -80)
max_ver = min(30 + np.array(self.opt.ref_polars).max(), 80)
for _ in range(self.opt.batch_size):
# render random view
ver = np.random.randint(min_ver, max_ver) - self.opt.ref_polars[0]
hor = np.random.randint(-180, 180)
radius = 0
vers.append(ver)
hors.append(hor)
radii.append(radius)
pose = orbit_camera(self.opt.ref_polars[0] + ver, self.opt.ref_azimuths[0] + hor, np.array(self.opt.ref_radii).mean() + radius)
# random render resolution
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
# Azimuth
# [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1
# [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3.
# Elevation: [0, 90): 0 [-90, 0): 1
idx_ver, idx_hor = int((self.opt.ref_polars[0]+ver) < 0), hor // 45
flag = 0
cx, cy = self.pp_pools[idx_ver, idx_hor+4].tolist()
cnt = 0
while not flag:
self.cam.cx = cx
self.cam.cy = cy
if cnt >= 5:
print(f"[ERROR] Something must be wrong here!")
break
# We modified the field of view. Otherwise, the rendered object will be too small
out = self.renderer.render(pose, self.cam.perspective, render_resolution, render_resolution, ssaa=ssaa)
image = out["image"]
image = image.permute(2, 0, 1).contiguous().unsqueeze(0)
mask = out["alpha"] > 0
mask = mask.permute(2, 0, 1).contiguous().unsqueeze(0)
delta_xy = find_mask_center_and_translate(image.detach(), mask.detach()) / render_resolution * 256
if delta_xy[0].abs() > 10 or delta_xy[1].abs() > 10:
cx -= delta_xy[0]
cy -= delta_xy[1]
self.pp_pools[idx_ver, idx_hor+4] = torch.tensor([cx, cy]) # Update pp_pools
cnt += 1
else:
flag = 1
images.append(image)
images = torch.cat(images, dim=0)
# guidance loss
strength = step_ratio * 0.15 + 0.8
if self.enable_zero123:
v1 = torch.stack([torch.tensor([radius]) + self.opt.ref_radii[0], torch.deg2rad(torch.tensor([ver]) + self.opt.ref_polars[0]), torch.deg2rad(torch.tensor([hor]) + self.opt.ref_azimuths[0])], dim=-1) # polar,azimuth,radius are all actually delta wrt default
v2 = torch.stack([torch.tensor(self.opt.ref_radii), torch.deg2rad(torch.tensor(self.opt.ref_polars)), torch.deg2rad(torch.tensor(self.opt.ref_azimuths))], dim=-1)
angles = torch.rad2deg(self.guidance_zero123.angle_between(v1, v2)).to(self.device)
choice = torch.argmin(angles.squeeze()).item()
cond_RT = {
"c2w": self.cams[choice][0],
"focal_length": self.cams[choice][-1],
}
target_RT = {
"c2w": pose,
"focal_length": np.array(self.cam.fx, self.cam.fy),
}
cam_embed = self.guidance_zero123.get_cam_embeddings_6D(target_RT, cond_RT)
# Additionally add an idx parameter to choose the correct viewpoints
refined_images = self.guidance_zero123.refine(images, cam_embed, strength=strength, idx=choice).float()
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution), mode="bilinear", align_corners=False)
loss = loss + self.opt.lambda_zero123 * F.mse_loss(images, refined_images)
if self.enable_dino:
loss_dino = self.guidance_dino.train_step(
images,
out["feature"].permute(2, 0, 1).contiguous(),
step_ratio=step_ratio if self.opt.anneal_timestep else None
)
loss = loss + self.opt.lambda_dino * loss_dino
# optimize step
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.need_update = True
def load_input(self, camera_path, order_path=None):
# load image
print(f'[INFO] load data from {camera_path}...')
if order_path is not None:
with open(order_path, 'r') as f:
indices = json.load(f)
else:
indices = None
with open(camera_path, 'r') as f:
data = json.load(f)
self.cam_params = {}
for k, v in data.items():
if indices is None:
self.cam_params[k] = data[k]
else:
if int(k) in indices or k in indices:
self.cam_params[k] = data[k]
if self.opt.all_views:
v['flag'] = 1
img_paths = [v["filepath"] for k, v in self.cam_params.items() if v["flag"]]
self.num_views = len(img_paths)
print(f"[INFO] Number of views: {self.num_views}")
for filepath in img_paths:
print(filepath)
images, masks = [], []
for i in range(len(img_paths)):
img = cv2.imread(img_paths[i], cv2.IMREAD_UNCHANGED)
if img.shape[-1] == 3:
if self.bg_remover is None:
self.bg_remover = rembg.new_session()
img = rembg.remove(img, session=self.bg_remover)
img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
input_mask = img[..., 3:]
# white bg
input_img = img[..., :3] * input_mask + (1 - input_mask)
# bgr to rgb
input_img = input_img[..., ::-1].copy()
images.append(input_img), masks.append(input_mask)
images = np.stack(images, axis=0)
masks = np.stack(masks, axis=0)
self.input_img = images[:self.num_views]
self.input_mask = masks[:self.num_views]
self.all_input_images = images
def save_model(self):
os.makedirs(self.opt.outdir, exist_ok=True)
path = os.path.join(self.opt.outdir, self.opt.save_path + '.' + self.opt.mesh_format)
self.renderer.export_mesh(path)
print(f"[INFO] save model to {path}.")
# no gui mode
def train(self, iters=500):
if iters > 0:
self.prepare_train()
for i in tqdm.trange(iters):
self.train_step()
# save
self.save_model()
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to the yaml config file")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
# auto find mesh from stage 1
if opt.mesh is None:
default_path = os.path.join(opt.outdir, opt.save_path + '_mesh.' + opt.mesh_format)
if os.path.exists(default_path):
opt.mesh = default_path
else:
raise ValueError(f"Cannot find mesh from {default_path}, must specify --mesh explicitly!")
gui = GUI(opt)
gui.train(opt.iters_refine)