Search.setIndex({docnames:["index","numpy","torch"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,sphinx:56},filenames:["index.rst","numpy.rst","torch.rst"],objects:{"liegroups.numpy.se2":{SE2Matrix:[1,1,1,""]},"liegroups.numpy.se2.SE2Matrix":{RotationType:[1,0,1,""],adjoint:[1,2,1,""],as_matrix:[1,2,1,""],dim:[1,0,1,""],dof:[1,0,1,""],dot:[1,2,1,""],exp:[1,2,1,""],from_matrix:[1,2,1,""],identity:[1,2,1,""],inv:[1,2,1,""],inv_left_jacobian:[1,2,1,""],is_valid_matrix:[1,2,1,""],left_jacobian:[1,2,1,""],log:[1,2,1,""],normalize:[1,2,1,""],odot:[1,2,1,""],perturb:[1,2,1,""],vee:[1,2,1,""],wedge:[1,2,1,""]},"liegroups.numpy.se3":{SE3Matrix:[1,1,1,""]},"liegroups.numpy.se3.SE3Matrix":{RotationType:[1,0,1,""],adjoint:[1,2,1,""],as_matrix:[1,2,1,""],curlyvee:[1,2,1,""],curlywedge:[1,2,1,""],dim:[1,0,1,""],dof:[1,0,1,""],dot:[1,2,1,""],exp:[1,2,1,""],from_matrix:[1,2,1,""],identity:[1,2,1,""],inv:[1,2,1,""],inv_left_jacobian:[1,2,1,""],is_valid_matrix:[1,2,1,""],left_jacobian:[1,2,1,""],left_jacobian_Q_matrix:[1,2,1,""],log:[1,2,1,""],normalize:[1,2,1,""],odot:[1,2,1,""],perturb:[1,2,1,""],vee:[1,2,1,""],wedge:[1,2,1,""]},"liegroups.numpy.so2":{SO2Matrix:[1,1,1,""]},"liegroups.numpy.so2.SO2Matrix":{adjoint:[1,2,1,""],as_matrix:[1,2,1,""],dim:[1,0,1,""],dof:[1,0,1,""],dot:[1,2,1,""],exp:[1,2,1,""],from_angle:[1,2,1,""],from_matrix:[1,2,1,""],identity:[1,2,1,""],inv:[1,2,1,""],inv_left_jacobian:[1,2,1,""],is_valid_matrix:[1,2,1,""],left_jacobian:[1,2,1,""],log:[1,2,1,""],normalize:[1,2,1,""],perturb:[1,2,1,""],to_angle:[1,2,1,""],vee:[1,2,1,""],wedge:[1,2,1,""]},"liegroups.numpy.so3":{SO3Matrix:[1,1,1,""]},"liegroups.numpy.so3.SO3Matrix":{adjoint:[1,2,1,""],as_matrix:[1,2,1,""],dim:[1,0,1,""],dof:[1,0,1,""],dot:[1,2,1,""],exp:[1,2,1,""],from_matrix:[1,2,1,""],from_quaternion:[1,2,1,""],from_rpy:[1,2,1,""],identity:[1,2,1,""],inv:[1,2,1,""],inv_left_jacobian:[1,2,1,""],is_valid_matrix:[1,2,1,""],left_jacobian:[1,2,1,""],log:[1,2,1,""],normalize:[1,2,1,""],perturb:[1,2,1,""],rotx:[1,2,1,""],roty:[1,2,1,""],rotz:[1,2,1,""],to_quaternion:[1,2,1,""],to_rpy:[1,2,1,""],vee:[1,2,1,""],wedge:[1,2,1,""]},"liegroups.torch":{SE2:[2,0,1,""],SE3:[2,0,1,""],SO2:[2,0,1,""],SO3:[2,0,1,""]},"liegroups.torch.se2":{SE2Matrix:[2,1,1,""]},"liegroups.torch.se2.SE2Matrix":{cpu:[2,2,1,""],cuda:[2,2,1,""],from_numpy:[2,2,1,""],is_cuda:[2,2,1,""],is_pinned:[2,2,1,""],pin_memory:[2,2,1,""]},"liegroups.torch.se3":{SE3Matrix:[2,1,1,""]},"liegroups.torch.se3.SE3Matrix":{cpu:[2,2,1,""],cuda:[2,2,1,""],from_numpy:[2,2,1,""],is_cuda:[2,2,1,""],is_pinned:[2,2,1,""],pin_memory:[2,2,1,""]},"liegroups.torch.so2":{SO2Matrix:[2,1,1,""]},"liegroups.torch.so2.SO2Matrix":{cpu:[2,2,1,""],cuda:[2,2,1,""],from_numpy:[2,2,1,""],is_cuda:[2,2,1,""],is_pinned:[2,2,1,""],pin_memory:[2,2,1,""]},"liegroups.torch.so3":{SO3Matrix:[2,1,1,""]},"liegroups.torch.so3.SO3Matrix":{cpu:[2,2,1,""],cuda:[2,2,1,""],from_numpy:[2,2,1,""],is_cuda:[2,2,1,""],is_pinned:[2,2,1,""],pin_memory:[2,2,1,""]},liegroups:{SE2:[1,0,1,""],SE3:[1,0,1,""],SO2:[1,0,1,""],SO3:[1,0,1,""]}},objnames:{"0":["py","attribute","Python attribute"],"1":["py","class","Python class"],"2":["py","method","Python method"]},objtypes:{"0":"py:attribute","1":"py:class","2":"py:method"},terms:{"2x3":1,"3x3":1,"3x6":1,"4x6":1,"case":1,"class":[1,2],"default":1,"return":[1,2],"throw":1,"true":[1,2],The:[1,2],about:1,activ:1,adjoint:1,agnost:2,algebra:[1,2],alia:[1,2],alibi:1,allow:2,alpha:1,also:2,angl:1,angle_in_radian:1,anoth:1,anyth:2,as_matrix:1,aspect:2,assum:1,atan2:1,axi:1,backend:[1,2],barfoot:1,base:2,batch:2,begin:1,beta:1,bmatrix:1,boldsymbol:1,check:1,classmethod:[1,2],comput:1,convert:1,coordin:1,copi:2,cos:1,cot:1,cpu:2,creat:[1,2],cuda:2,curlyve:1,curlywedg:1,defin:1,degre:1,det:1,devic:2,dim:1,dimens:1,direct:1,doc:2,dof:1,dot:1,effect:1,end:1,ensur:1,epsilon:1,error:1,eta:1,euclidean:1,euler:1,exp:1,exponenti:1,fals:[1,2],faster:2,floattensor:2,form:1,frac:1,freedom:1,from:1,from_angl:1,from_matrix:1,from_numpi:2,from_quaternion:1,from_rpi:1,gamma:1,gener:2,get:1,given:[1,2],gpu:2,highlight:2,homogen:1,host:2,html:2,http:2,ident:1,implement:[1,2],input:2,integr:2,inv:1,inv_left_jacobian:1,invalid:1,invers:1,is_cuda:2,is_pin:2,is_valid_matrix:1,its:1,jacobian:1,left:1,left_jacobian:1,left_jacobian_q_matrix:1,length:1,librari:[1,2],liegroup:0,linear:[1,2],local:1,lock:2,log:1,logarithm:1,make:2,map:1,master:2,mat:[1,2],mathbb:1,mathbf:1,mathcal:1,mathfrak:1,mathrm:1,matric:1,matrix:1,memori:2,middl:1,might:2,miss:1,more:1,multipli:1,negat:1,non_block:2,none:2,normal:1,note:2,numpi:[1,2],odot:1,one:1,oper:[1,2],option:2,order:1,org:2,other:[1,2],otherwis:1,output:2,page:2,paramet:1,perturb:1,phi:1,phi_1:1,phi_2:1,phi_3:1,pin:2,pin_memori:2,pitch:1,place:1,provid:2,psi:1,pytorch:2,quat:1,quaternion:1,rad:1,radian:1,recov:1,represent:1,resid:2,respect:1,rho:1,right:1,roll:1,rot:[1,2],rotat:[1,2],rotationtyp:1,roti:1,rotx:1,rotz:1,round:1,rpy:1,safe:1,scale:1,se2:[1,2],se2matrix:[1,2],se3:[1,2],se3matrix:[1,2],see:[1,2],sensibl:2,sin:1,slower:1,small:1,so2:[1,2],so2matrix:[1,2],so3:[1,2],so3matrix:[1,2],space:1,specif:2,storag:1,tangent:1,tensor:2,text:1,thei:2,themselv:2,thi:[1,2],time:1,to_angl:1,to_quaternion:1,to_rpi:1,torch:0,tran:[1,2],transform:[1,2],translat:1,type:2,underli:[1,2],unit:1,used:1,user:2,uses:[1,2],using:1,valid:1,valu:1,variabl:1,vector:1,vee:1,version:2,vert:1,wedg:1,well:2,which:[1,2],wxyz:1,xyzw:1,yaw:1},titles:["Lie Groups","liegroups","liegroups.torch"],titleterms:{group:0,lie:0,liegroup:[1,2],torch:2}})