import copy import torch from liegroups.torch import SE3, SO3, utils def test_from_matrix(): T_good = SE3.from_matrix(torch.eye(4)) assert isinstance(T_good, SE3) \ and isinstance(T_good.rot, SO3) \ and T_good.trans.shape == (3,) \ and SE3.is_valid_matrix(T_good.as_matrix()).all() T_bad = SE3.from_matrix(torch.eye(4).add_(1e-3), normalize=True) assert isinstance(T_bad, SE3) \ and isinstance(T_bad.rot, SO3) \ and T_bad.trans.shape == (3,) \ and SE3.is_valid_matrix(T_bad.as_matrix()).all() def test_from_matrix_batch(): T_good = SE3.from_matrix(torch.eye(4).repeat(5, 1, 1)) assert isinstance(T_good, SE3) \ and T_good.trans.shape == (5, 3) \ and SE3.is_valid_matrix(T_good.as_matrix()).all() T_bad = T_good.as_matrix() T_bad[3, :, :].add_(0.1) T_bad = SE3.from_matrix(T_bad, normalize=True) assert isinstance(T_bad, SE3) \ and T_bad.trans.shape == (5, 3) \ and SE3.is_valid_matrix(T_bad.as_matrix()).all() def test_identity(): T = SE3.identity() assert isinstance(T, SE3) \ and isinstance(T.rot, SO3) \ and T.rot.mat.dim() == 2 \ and T.trans.shape == (3,) def test_identity_batch(): T = SE3.identity(5) assert isinstance(T, SE3) \ and isinstance(T.rot, SO3) \ and T.rot.mat.dim() == 3 \ and T.trans.shape == (5, 3) def test_dot(): T = torch.Tensor([[0, 0, -1, 0.1], [0, 1, 0, 0.5], [1, 0, 0, -0.5], [0, 0, 0, 1]]) T_SE3 = SE3.from_matrix(T) pt = torch.Tensor([1, 2, 3]) pth = torch.Tensor([1, 2, 3, 1]) TT = torch.mm(T, T) TT_SE3 = T_SE3.dot(T_SE3).as_matrix() assert utils.allclose(TT_SE3, TT) Tpt = torch.matmul(T[0:3, 0:3], pt) + T[0:3, 3] Tpt_SE3 = T_SE3.dot(pt) assert utils.allclose(Tpt_SE3, Tpt) Tpth = torch.matmul(T, pth) Tpth_SE3 = T_SE3.dot(pth) assert utils.allclose(Tpth_SE3, Tpth) and \ utils.allclose(Tpth_SE3[0:3], Tpt) def test_dot_batch(): T1 = torch.Tensor([[0, 0, -1, 0.1], [0, 1, 0, 0.5], [1, 0, 0, -0.5], [0, 0, 0, 1]]).expand(5, 4, 4) T2 = torch.Tensor([[0, 0, -1, 0.1], [0, 1, 0, 0.5], [1, 0, 0, -0.5], [0, 0, 0, 1]]) T1_SE3 = SE3.from_matrix(T1) T2_SE3 = SE3.from_matrix(T2) pt1 = torch.Tensor([1, 2, 3]) pt2 = torch.Tensor([4, 5, 6]) pt3 = torch.Tensor([7, 8, 9]) pts = torch.cat([pt1.unsqueeze(dim=0), pt2.unsqueeze(dim=0), pt3.unsqueeze(dim=0)], dim=0) # 3x3 ptsbatch = pts.unsqueeze(dim=0).expand(5, 3, 3) pt1h = torch.Tensor([1, 2, 3, 1]) pt2h = torch.Tensor([4, 5, 6, 1]) pt3h = torch.Tensor([7, 8, 9, 1]) ptsh = torch.cat([pt1h.unsqueeze(dim=0), pt2h.unsqueeze(dim=0), pt3h.unsqueeze(dim=0)], dim=0) # 3x4 ptshbatch = ptsh.unsqueeze(dim=0).expand(5, 3, 4) T1T1 = torch.bmm(T1, T1) T1T1_SE3 = T1_SE3.dot(T1_SE3).as_matrix() assert T1T1_SE3.shape == T1.shape and utils.allclose(T1T1_SE3, T1T1) T1T2 = torch.matmul(T1, T2) T1T2_SE3 = T1_SE3.dot(T2_SE3).as_matrix() assert T1T2_SE3.shape == T1.shape and utils.allclose(T1T2_SE3, T1T2) T1pt1 = torch.matmul(T1[:, 0:3, 0:3], pt1) + T1[:, 0:3, 3] T1pt1_SE3 = T1_SE3.dot(pt1) assert T1pt1_SE3.shape == (T1.shape[0], pt1.shape[0]) \ and utils.allclose(T1pt1_SE3, T1pt1) T1pt1h = torch.matmul(T1, pt1h) T1pt1h_SE3 = T1_SE3.dot(pt1h) assert T1pt1h_SE3.shape == (T1.shape[0], pt1h.shape[0]) \ and utils.allclose(T1pt1h_SE3, T1pt1h) \ and utils.allclose(T1pt1h_SE3[:, 0:3], T1pt1_SE3) T1pt2 = torch.matmul(T1[:, 0:3, 0:3], pt2) + T1[:, 0:3, 3] T1pt2_SE3 = T1_SE3.dot(pt2) assert T1pt2_SE3.shape == (T1.shape[0], pt2.shape[0]) \ and utils.allclose(T1pt2_SE3, T1pt2) T1pt2h = torch.matmul(T1, pt2h) T1pt2h_SE3 = T1_SE3.dot(pt2h) assert T1pt2h_SE3.shape == (T1.shape[0], pt2h.shape[0]) \ and utils.allclose(T1pt2h_SE3, T1pt2h) \ and utils.allclose(T1pt2h_SE3[:, 0:3], T1pt2_SE3) T1pts = torch.bmm(T1[:, 0:3, 0:3], pts.unsqueeze(dim=0).expand( T1.shape[0], pts.shape[0], pts.shape[1]).transpose(2, 1)).transpose(2, 1) + \ T1[:, 0:3, 3].unsqueeze(dim=1).expand( T1.shape[0], pts.shape[0], pts.shape[1]) T1pts_SE3 = T1_SE3.dot(pts) assert T1pts_SE3.shape == (T1.shape[0], pts.shape[0], pts.shape[1]) \ and utils.allclose(T1pts_SE3, T1pts) \ and utils.allclose(T1pt1, T1pts[:, 0, :]) \ and utils.allclose(T1pt2, T1pts[:, 1, :]) T1ptsh = torch.bmm(T1, ptsh.unsqueeze(dim=0).expand( T1.shape[0], ptsh.shape[0], ptsh.shape[1]).transpose(2, 1)).transpose(2, 1) T1ptsh_SE3 = T1_SE3.dot(ptsh) assert T1ptsh_SE3.shape == (T1.shape[0], ptsh.shape[0], ptsh.shape[1]) \ and utils.allclose(T1ptsh_SE3, T1ptsh) \ and utils.allclose(T1pt1h, T1ptsh[:, 0, :]) \ and utils.allclose(T1pt2h, T1ptsh[:, 1, :]) \ and utils.allclose(T1ptsh_SE3[:, :, 0:3], T1pts_SE3) T1ptsbatch = torch.bmm(T1[:, 0:3, 0:3], ptsbatch.transpose(2, 1)).transpose(2, 1) + \ T1[:, 0:3, 3].unsqueeze(dim=1).expand(ptsbatch.shape) T1ptsbatch_SE3 = T1_SE3.dot(ptsbatch) assert T1ptsbatch_SE3.shape == ptsbatch.shape \ and utils.allclose(T1ptsbatch_SE3, T1ptsbatch) \ and utils.allclose(T1pt1, T1ptsbatch[:, 0, :]) \ and utils.allclose(T1pt2, T1ptsbatch[:, 1, :]) T1ptshbatch = torch.bmm(T1, ptshbatch.transpose(2, 1)).transpose(2, 1) T1ptshbatch_SE3 = T1_SE3.dot(ptshbatch) assert T1ptshbatch_SE3.shape == ptshbatch.shape \ and utils.allclose(T1ptshbatch_SE3, T1ptshbatch) \ and utils.allclose(T1pt1h, T1ptshbatch[:, 0, :]) \ and utils.allclose(T1pt2h, T1ptshbatch[:, 1, :]) \ and utils.allclose(T1ptshbatch_SE3[:, :, 0:3], T1ptsbatch_SE3) T2ptsbatch = torch.matmul(T2[0:3, 0:3], ptsbatch.transpose(2, 1)).transpose(2, 1) + \ T1[:, 0:3, 3].unsqueeze(dim=1).expand(ptsbatch.shape) T2ptsbatch_SE3 = T2_SE3.dot(ptsbatch) assert T2ptsbatch_SE3.shape == ptsbatch.shape \ and utils.allclose(T2ptsbatch_SE3, T2ptsbatch) \ and utils.allclose(T2_SE3.dot(pt1), T2ptsbatch[:, 0, :]) \ and utils.allclose(T2_SE3.dot(pt2), T2ptsbatch[:, 1, :]) T2ptshbatch = torch.matmul(T2, ptshbatch.transpose(2, 1)).transpose(2, 1) T2ptshbatch_SE3 = T2_SE3.dot(ptshbatch) assert T2ptshbatch_SE3.shape == ptshbatch.shape \ and utils.allclose(T2ptshbatch_SE3, T2ptshbatch) \ and utils.allclose(T2_SE3.dot(pt1h), T2ptshbatch[:, 0, :]) \ and utils.allclose(T2_SE3.dot(pt2h), T2ptshbatch[:, 1, :]) \ and utils.allclose(T2ptshbatch_SE3[:, :, 0:3], T2ptsbatch_SE3) def test_wedge_vee(): xi = 0.1 * torch.Tensor([1, 2, 3, 4, 5, 6]) Xi = SE3.wedge(xi) assert (xi == SE3.vee(Xi)).all() def test_wedge_vee_batch(): xis = 0.1 * torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]) Xis = SE3.wedge(xis) assert (xis == SE3.vee(Xis)).all() def test_curlywedge_curlyvee(): xi = torch.Tensor([1, 2, 3, 4, 5, 6]) Psi = SE3.curlywedge(xi) assert (xi == SE3.curlyvee(Psi)).all() def test_curlywedge_curlyvee_batch(): xis = torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]) Psis = SE3.curlywedge(xis) assert (xis == SE3.curlyvee(Psis)).all() def test_odot(): p1 = torch.Tensor([1, 2, 3]) p2 = torch.Tensor([1, 2, 3, 1]) p3 = torch.Tensor([1, 2, 3, 0]) odot12 = torch.cat([SE3.odot(p1), torch.zeros(6).unsqueeze_(dim=0)], dim=0) odot13 = torch.cat([SE3.odot(p1, directional=True), torch.zeros(6).unsqueeze_(dim=0)], dim=0) odot2 = SE3.odot(p2) odot3 = SE3.odot(p3) assert (odot12 == odot2).all() assert (odot13 == odot3).all() def test_odot_batch(): p1 = torch.Tensor([1, 2, 3]) p2 = torch.Tensor([4, 5, 6]) ps = torch.cat([p1.unsqueeze(dim=0), p2.unsqueeze(dim=0)], dim=0) odot1 = SE3.odot(p1) odot2 = SE3.odot(p2) odots = SE3.odot(ps) assert (odot1 == odots[0, :, :]).all() assert (odot2 == odots[1, :, :]).all() def test_exp_log(): T = SE3.exp(torch.Tensor([1, 2, 3, 4, 5, 6])) assert utils.allclose(SE3.exp(SE3.log(T)).as_matrix(), T.as_matrix()) def test_exp_log_batch(): T = SE3.exp(0.1 * torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])) assert utils.allclose(SE3.exp(SE3.log(T)).as_matrix(), T.as_matrix()) def test_left_jacobian(): xi1 = torch.Tensor([1, 2, 3, 4, 5, 6]) assert utils.allclose( torch.mm(SE3.left_jacobian(xi1), SE3.inv_left_jacobian(xi1)), torch.eye(6) ) xi2 = torch.Tensor([0, 0, 0, 0, 0, 0]) assert utils.allclose( torch.mm(SE3.left_jacobian(xi2), SE3.inv_left_jacobian(xi2)), torch.eye(6) ) def test_left_jacobian_batch(): xis = torch.Tensor([[1, 2, 3, 4, 5, 6], [0, 0, 0, 0, 0, 0]]) assert utils.allclose( SE3.left_jacobian(xis).bmm(SE3.inv_left_jacobian(xis)), torch.eye(6).unsqueeze_(dim=0).expand(2, 6, 6) ) def test_perturb(): T = SE3.exp(torch.Tensor([1, 2, 3, 4, 5, 6])) T_copy = copy.deepcopy(T) xi = torch.Tensor([0.3, 0.2, 0.1, -0.1, -0.2, -0.3]) T.perturb(xi) assert utils.allclose(T.as_matrix(), (SE3.exp(xi).dot(T_copy)).as_matrix()) def test_perturb_batch(): T = SE3.exp(0.1 * torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])) T_copy1 = copy.deepcopy(T) T_copy2 = copy.deepcopy(T) xi = torch.Tensor([0.3, 0.2, 0.1, -0.1, -0.2, -0.3]) T_copy1.perturb(xi) assert utils.allclose(T_copy1.as_matrix(), (SE3.exp(xi).dot(T)).as_matrix()) xis = torch.Tensor([[0.3, 0.2, 0.1, -0.1, -0.2, -0.3], [-0.3, -0.2, -0.1, 0.1, 0.2, 0.3]]) T_copy2.perturb(xis) assert utils.allclose(T_copy2.as_matrix(), (SE3.exp(xis).dot(T)).as_matrix()) def test_normalize(): T = SE3.exp(torch.Tensor([1, 2, 3, 4, 5, 6])) T.rot.mat.add_(0.1) T.normalize() assert SE3.is_valid_matrix(T.as_matrix()).all() def test_normalize_batch(): T = SE3.exp(0.1 * torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18]])) assert SE3.is_valid_matrix(T.as_matrix()).all() T.rot.mat.add_(0.1) assert (SE3.is_valid_matrix(T.as_matrix()) == torch.ByteTensor([0, 0, 0])).all() T.normalize(inds=[0, 2]) assert (SE3.is_valid_matrix(T.as_matrix()) == torch.ByteTensor([1, 0, 1])).all() T.normalize() assert SE3.is_valid_matrix(T.as_matrix()).all() def test_inv(): T = SE3.exp(torch.Tensor([1, 2, 3, 4, 5, 6])) assert utils.allclose((T.dot(T.inv())).as_matrix(), torch.eye(4)) def test_inv_batch(): T = SE3.exp(0.1 * torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18]])) assert utils.allclose(T.dot(T.inv()).as_matrix(), SE3.identity(T.trans.shape[0]).as_matrix()) def test_adjoint(): T = SE3.exp(torch.Tensor([1, 2, 3, 4, 5, 6])) assert T.adjoint().shape == (6, 6) def test_adjoint_batch(): T = SE3.exp(0.1 * torch.Tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])) assert T.adjoint().shape == (2, 6, 6)