import copy import torch import numpy as np from liegroups.torch import SO3, utils def test_from_matrix(): C_good = SO3.from_matrix(torch.eye(3)) assert isinstance(C_good, SO3) \ and C_good.mat.dim() == 2 \ and C_good.mat.shape == (3, 3) \ and SO3.is_valid_matrix(C_good.mat).all() C_bad = SO3.from_matrix(torch.eye(3).add_(1e-3), normalize=True) assert isinstance(C_bad, SO3) \ and C_bad.mat.dim() == 2 \ and C_bad.mat.shape == (3, 3) \ and SO3.is_valid_matrix(C_bad.mat).all() def test_from_matrix_batch(): C_good = SO3.from_matrix(torch.eye(3).repeat(5, 1, 1)) assert isinstance(C_good, SO3) \ and C_good.mat.dim() == 3 \ and C_good.mat.shape == (5, 3, 3) \ and SO3.is_valid_matrix(C_good.mat).all() C_bad = copy.deepcopy(C_good.mat) C_bad[3].add_(0.1) C_bad = SO3.from_matrix(C_bad, normalize=True) assert isinstance(C_bad, SO3) \ and C_bad.mat.dim() == 3 \ and C_bad.mat.shape == (5, 3, 3) \ and SO3.is_valid_matrix(C_bad.mat).all() def test_identity(): C = SO3.identity() assert isinstance(C, SO3) \ and C.mat.dim() == 2 \ and C.mat.shape == (3, 3) def test_identity_batch(): C = SO3.identity(5) assert isinstance(C, SO3) \ and C.mat.dim() == 3 \ and C.mat.shape == (5, 3, 3) C_copy = SO3.identity(5, copy=True) assert isinstance(C_copy, SO3) \ and C_copy.mat.dim() == 3 \ and C_copy.mat.shape == (5, 3, 3) def test_dot(): C = SO3(torch.Tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]])) pt = torch.Tensor([1, 2, 3]) CC = C.mat.mm(C.mat) assert utils.allclose(C.dot(C).mat, CC) Cpt = C.mat.matmul(pt) assert utils.allclose(C.dot(pt), Cpt) def test_dot_batch(): C1 = SO3(torch.Tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]]).expand(5, 3, 3)) C3 = SO3(torch.Tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]])) pt1 = torch.Tensor([1, 2, 3]) pt3 = torch.Tensor([4, 5, 6]) pt3 = torch.Tensor([7, 8, 9]) pts = torch.cat([pt1.unsqueeze(dim=0), pt3.unsqueeze(dim=0), pt3.unsqueeze(dim=0)], dim=0) # 3x3 ptsbatch = pts.unsqueeze(dim=0).expand(5, 3, 3) C1C1 = torch.bmm(C1.mat, C1.mat) C1C1_SO3 = C1.dot(C1).mat assert C1C1_SO3.shape == C1.mat.shape and utils.allclose(C1C1_SO3, C1C1) C1C3 = torch.matmul(C1.mat, C3.mat) C1C3_SO3 = C1.dot(C3).mat assert C1C3_SO3.shape == C1.mat.shape and utils.allclose(C1C3_SO3, C1C3) C1pt1 = torch.matmul(C1.mat, pt1) C1pt1_SO3 = C1.dot(pt1) assert C1pt1_SO3.shape == (C1.mat.shape[0], pt1.shape[0]) \ and utils.allclose(C1pt1_SO3, C1pt1) C1pt3 = torch.matmul(C1.mat, pt3) C1pt3_SO3 = C1.dot(pt3) assert C1pt3_SO3.shape == (C1.mat.shape[0], pt3.shape[0]) \ and utils.allclose(C1pt3_SO3, C1pt3) C1pts = torch.matmul(C1.mat, pts.transpose(1, 0)).transpose(2, 1) C1pts_SO3 = C1.dot(pts) assert C1pts_SO3.shape == (C1.mat.shape[0], pts.shape[0], pts.shape[1]) \ and utils.allclose(C1pts_SO3, C1pts) \ and utils.allclose(C1pt1, C1pts[:, 0, :]) \ and utils.allclose(C1pt3, C1pts[:, 1, :]) C1ptsbatch = torch.bmm(C1.mat, ptsbatch.transpose(2, 1)).transpose(2, 1) C1ptsbatch_SO3 = C1.dot(ptsbatch) assert C1ptsbatch_SO3.shape == ptsbatch.shape \ and utils.allclose(C1ptsbatch_SO3, C1ptsbatch) \ and utils.allclose(C1pt1, C1ptsbatch[:, 0, :]) \ and utils.allclose(C1pt3, C1ptsbatch[:, 1, :]) C3ptsbatch = torch.matmul(C3.mat, ptsbatch.transpose(2, 1)).transpose(2, 1) C3ptsbatch_SO3 = C3.dot(ptsbatch) assert C3ptsbatch_SO3.shape == ptsbatch.shape \ and utils.allclose(C3ptsbatch_SO3, C3ptsbatch) \ and utils.allclose(C3.dot(pt1), C3ptsbatch[:, 0, :]) \ and utils.allclose(C3.dot(pt3), C3ptsbatch[:, 1, :]) def test_wedge(): phi = torch.Tensor([1, 2, 3]) Phi = SO3.wedge(phi) assert (Phi == -Phi.t()).all() def test_wedge_batch(): phis = torch.Tensor([[1, 2, 3], [4, 5, 6]]) Phis = SO3.wedge(phis) assert (Phis[0, :, :] == SO3.wedge(phis[0])).all() assert (Phis[1, :, :] == SO3.wedge(phis[1])).all() def test_wedge_vee(): phi = torch.Tensor([1, 2, 3]) Phi = SO3.wedge(phi) assert (phi == SO3.vee(Phi)).all() def test_wedge_vee_batch(): phis = torch.Tensor([[1, 2, 3], [4, 5, 6]]) Phis = SO3.wedge(phis) assert (phis == SO3.vee(Phis)).all() def test_left_jacobians(): phi_small = torch.Tensor([0., 0., 0.]) phi_big = torch.Tensor([np.pi / 2, np.pi / 3, np.pi / 4]) left_jacobian_small = SO3.left_jacobian(phi_small) inv_left_jacobian_small = SO3.inv_left_jacobian(phi_small) assert utils.allclose( torch.mm(left_jacobian_small, inv_left_jacobian_small), torch.eye(3)) left_jacobian_big = SO3.left_jacobian(phi_big) inv_left_jacobian_big = SO3.inv_left_jacobian(phi_big) assert utils.allclose( torch.mm(left_jacobian_big, inv_left_jacobian_big), torch.eye(3)) def test_left_jacobians_batch(): phis = torch.Tensor([[0., 0., 0.], [np.pi / 2, np.pi / 3, np.pi / 4]]) left_jacobian = SO3.left_jacobian(phis) inv_left_jacobian = SO3.inv_left_jacobian(phis) assert utils.allclose(torch.bmm(left_jacobian, inv_left_jacobian), torch.eye(3).unsqueeze_(dim=0).expand(2, 3, 3)) def test_exp_log(): C_big = SO3.exp(0.25 * np.pi * torch.ones(3)) assert utils.allclose(SO3.exp(SO3.log(C_big)).mat, C_big.mat) C_small = SO3.exp(torch.zeros(3)) assert utils.allclose(SO3.exp(SO3.log(C_small)).mat, C_small.mat) def test_exp_log_batch(): C = SO3.exp(torch.Tensor([[1, 2, 3], [0, 0, 0]])) assert utils.allclose(SO3.exp(SO3.log(C)).mat, C.mat) def test_perturb(): C = SO3.exp(0.25 * np.pi * torch.ones(3)) C_copy = copy.deepcopy(C) phi = torch.Tensor([0.1, 0.2, 0.3]) C.perturb(phi) assert utils.allclose( C.as_matrix(), (SO3.exp(phi).dot(C_copy)).as_matrix()) def test_perturb_batch(): C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6]])) C_copy1 = copy.deepcopy(C) C_copy2 = copy.deepcopy(C) phi = torch.Tensor([0.1, 0.2, 0.3]) C_copy1.perturb(phi) assert utils.allclose(C_copy1.as_matrix(), (SO3.exp(phi).dot(C)).as_matrix()) phis = torch.Tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]) C_copy2.perturb(phis) assert utils.allclose(C_copy2.as_matrix(), (SO3.exp(phis).dot(C)).as_matrix()) def test_normalize(): C = SO3.exp(0.25 * np.pi * torch.ones(3)) C.mat.add_(0.1) C.normalize() assert SO3.is_valid_matrix(C.mat).all() def test_normalize_batch(): C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6], [0, 0, 0]])) assert (SO3.is_valid_matrix(C.mat) == torch.ByteTensor([1, 1, 1])).all() C.mat.add_(0.1) assert (SO3.is_valid_matrix(C.mat) == torch.ByteTensor([0, 0, 0])).all() C.normalize(inds=[0, 2]) assert (SO3.is_valid_matrix(C.mat) == torch.ByteTensor([1, 0, 1])).all() C.normalize() assert SO3.is_valid_matrix(C.mat).all() def test_inv(): C = SO3.exp(0.25 * np.pi * torch.ones(3)) assert utils.allclose(C.dot(C.inv()).mat, SO3.identity().mat) def test_inv_batch(): C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6]])) assert utils.allclose(C.dot(C.inv()).mat, SO3.identity(C.mat.shape[0]).mat) def test_adjoint(): C = SO3.exp(0.25 * np.pi * torch.ones(3)) assert (C.adjoint() == C.mat).all() def test_adjoint_batch(): C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6]])) assert (C.adjoint() == C.mat).all() def test_rotx(): C_got = SO3.rotx(torch.Tensor([np.pi / 2])) C_expected = torch.Tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) assert utils.allclose(C_got.mat, C_expected) def test_rotx_batch(): C_got = SO3.rotx(torch.Tensor([np.pi / 2, np.pi])) C_expected = torch.cat([torch.Tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]]).unsqueeze_(dim=0), torch.Tensor([[1, 0, 0], [0, -1, 0], [0, 0, -1]]).unsqueeze_(dim=0)], dim=0) assert utils.allclose(C_got.mat, C_expected) def test_roty(): C_got = SO3.roty(torch.Tensor([np.pi / 2])) C_expected = torch.Tensor([[0, 0, 1], [0, 1, 0], [-1, 0, 0]]) assert utils.allclose(C_got.mat, C_expected) def test_roty_batch(): C_got = SO3.roty(torch.Tensor([np.pi / 2, np.pi])) C_expected = torch.cat([torch.Tensor([[0, 0, 1], [0, 1, 0], [-1, 0, 0]]).unsqueeze_(dim=0), torch.Tensor([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]).unsqueeze_(dim=0)], dim=0) assert utils.allclose(C_got.mat, C_expected) def test_rotz(): C_got = SO3.rotz(torch.Tensor([np.pi / 2])) C_expected = torch.Tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) assert utils.allclose(C_got.mat, C_expected) def test_rotz_batch(): C_got = SO3.rotz(torch.Tensor([np.pi / 2, np.pi])) C_expected = torch.cat([torch.Tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]]).unsqueeze_(dim=0), torch.Tensor([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]).unsqueeze_(dim=0)], dim=0) assert utils.allclose(C_got.mat, C_expected) def test_rpy(): rpy = torch.Tensor([np.pi / 12, np.pi / 6, np.pi / 3]) C_got = SO3.from_rpy(rpy) C_expected = SO3.rotz(torch.Tensor([rpy[2]])).dot( SO3.roty(torch.Tensor([rpy[1]])).dot( SO3.rotx(torch.Tensor([rpy[0]])) ) ) assert utils.allclose(C_got.mat, C_expected.mat) def test_rpy_batch(): rpy = torch.Tensor([[np.pi / 12, np.pi / 6, np.pi / 3], [0, 0, 0]]) C_got = SO3.from_rpy(rpy) C_expected = SO3.rotz(rpy[:, 2]).dot( SO3.roty(rpy[:, 1]).dot( SO3.rotx(rpy[:, 0]) ) ) assert utils.allclose(C_got.mat, C_expected.mat) def test_quaternion(): q1 = torch.Tensor([1, 0, 0, 0]) q2 = torch.Tensor([0, 1, 0, 0]) q3 = torch.Tensor([0, 0, 1, 0]) q4 = torch.Tensor([0, 0, 0, 1]) q5 = 0.5 * torch.ones(4) q6 = -q5 assert utils.allclose(SO3.from_quaternion(q1).to_quaternion(), q1) assert utils.allclose(SO3.from_quaternion(q2).to_quaternion(), q2) assert utils.allclose(SO3.from_quaternion(q3).to_quaternion(), q3) assert utils.allclose(SO3.from_quaternion(q4).to_quaternion(), q4) assert utils.allclose(SO3.from_quaternion(q5).to_quaternion(), q5) assert utils.allclose(SO3.from_quaternion(q5).mat, SO3.from_quaternion(q6).mat) def test_quaternion_batch(): quats = torch.Tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0.5, 0.5, 0.5, 0.5]]) assert utils.allclose(SO3.from_quaternion(quats).to_quaternion(), quats)