import os import cv2 import sys import json import time import tqdm import numpy as np import pandas as pd import torch import torch.nn.functional as F import rembg from liegroups.torch import SE3 import sys sys.path.append('./') from sparseags.cam_utils import orbit_camera, OrbitCamera, mat2latlon, find_mask_center_and_translate from sparseags.render_utils.gs_renderer import Renderer, Camera, FoVCamera, CustomCamera from sparseags.mesh_utils.grid_put import mipmap_linear_grid_put_2d from sparseags.mesh_utils.mesh import Mesh, safe_normalize class GUI: def __init__(self, opt): self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. self.gui = opt.gui # enable gui self.W = opt.W self.H = opt.H self.mode = "image" self.seed = 0 self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32) self.need_update = True # update buffer_image # models self.device = torch.device("cuda") self.bg_remover = None self.guidance_sd = None self.guidance_zero123 = None self.guidance_dino = None self.enable_sd = False self.enable_zero123 = False self.enable_dino = False # renderer self.renderer = Renderer(sh_degree=self.opt.sh_degree) self.renderer.enable_dino = self.opt.lambda_dino > 0 self.renderer.gaussians.enable_dino = self.opt.lambda_dino > 0 self.renderer.gaussians.dino_feat_dim = 36 self.gaussain_scale_factor = 1 # input image self.input_img = None self.input_mask = None self.input_img_torch = None self.input_mask_torch = None # training stuff self.training = False self.optimizer = None self.step = 0 self.train_steps = 1 # steps per rendering loop # load input data self.load_input(self.opt.camera_path, self.opt.order_path) self.cam = OrbitCamera(opt.W, opt.H, r=3, fovy=opt.fovy) # override if provide a checkpoint if self.opt.load is not None: self.renderer.initialize(self.opt.load) else: # initialize gaussians to a blob self.renderer.initialize(num_pts=self.opt.num_pts, radius=0.3, mode='sphere') # 0.5 for radius 3 # initialize gaussians to a carved voxel # self.renderer.initialize(num_pts=self.opt.num_pts, radius=0.5, cameras=self.cams, masks=self.input_mask, mode='carve') # 0.5 def seed_everything(self): try: seed = int(self.seed) except: seed = np.random.randint(0, 1000000) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True self.last_seed = seed def prepare_train(self): self.step = 0 # setup training self.renderer.gaussians.training_setup(self.opt) # do progressive sh-level self.renderer.gaussians.active_sh_degree = 0 self.optimizer = self.renderer.gaussians.optimizer self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != "" self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None self.enable_dino = self.opt.lambda_dino > 0 # lazy load guidance model if self.guidance_zero123 is None and self.enable_zero123: print(f"[INFO] loading zero123...") from sparseags.guidance_utils.zero123_6d_utils import Zero123 self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers') print(f"[INFO] loaded zero123!") self.guidance_zero123.opt = self.opt self.guidance_zero123.num_views = self.num_views # input image if self.input_img is not None: import torchvision.transforms as transforms from PIL import Image self.input_img_torch = torch.from_numpy(self.input_img).permute(0, 3, 1, 2).to(self.device) self.input_mask_torch = torch.from_numpy(self.input_mask).permute(0, 3, 1, 2).to(self.device) # prepare embeddings with torch.no_grad(): if self.enable_zero123: self.guidance_zero123.get_img_embeds(self.input_img_torch) def train_step(self): starter = torch.cuda.Event(enable_timing=True) ender = torch.cuda.Event(enable_timing=True) starter.record() for _ in range(self.train_steps): self.step += 1 step_ratio = min(1, self.step / self.opt.iters) # update lr self.renderer.gaussians.update_learning_rate(self.step) loss = 0 ### known view for choice in range(self.num_views): # For multiview training cur_cam = self.cams[choice] bg_size = self.renderer.gaussians.dino_feat_dim if self.enable_dino else 3 bg_color = torch.ones( bg_size, dtype=torch.float32, device="cuda", ) out = self.renderer.render(cur_cam, bg_color=bg_color) # rgb loss image = out["image"] loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch[choice]) # mask loss mask = out["alpha"] loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch[choice]) # dino loss if self.enable_dino: feature = out["feature"] loss = loss + 1000 * step_ratio * F.mse_loss(feature, self.guidance_dino.embeddings[choice]) ### novel view (manual batch) render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512) images = [] masks = [] vers, hors, radii = [], [], [] # avoid too large elevation (> 80 or < -80) min_ver = max(-60 + np.array(self.opt.ref_polars).min(), -80) # + - 30 for co3D max_ver = min(60 + np.array(self.opt.ref_polars).max(), 80) for _ in range(self.opt.batch_size): # render random view ver = np.random.randint(min_ver, max_ver) - self.opt.ref_polars[0] hor = np.random.randint(-180, 180) radius = 0 vers.append(ver) hors.append(hor) radii.append(radius) pose = orbit_camera( self.opt.ref_polars[0] + ver, self.opt.ref_azimuths[0] + hor, np.array(self.opt.ref_radii).mean() + radius, ) # Azimuth # [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1 # [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3. # Elevation: [0, 90): 0 [-90, 0): 1 idx_ver, idx_hor = int((self.opt.ref_polars[0]+ver) < 0), hor // 45 flag = 0 cx, cy = self.pp_pools[idx_ver, idx_hor+4].tolist() cnt = 0 fx, fy = self.fx, self.fy # in each iter we modify cx, cy, fx, fy to make sure the rendered object is at the center and has a reasonable size while not flag: if cnt >= 10: # print(f"[ERROR] Something might be wrong here!") break flag_principal_point, flag_focal_length = 0, 0 # we modified the field of view. Otherwise, the rendered object will be too small # cur_cam = FoVCamera(pose, render_resolution, render_resolution, self.fovy, self.fovx, self.cam.near, self.cam.far) cur_cam = Camera(pose, render_resolution, render_resolution, fx, fy, cx, cy, self.cam.near, self.cam.far) bg_size = self.renderer.gaussians.dino_feat_dim if self.enable_dino else 3 bg_color = torch.ones(bg_size, dtype=torch.float32, device="cuda") if np.random.rand() > self.opt.invert_bg_prob else torch.zeros(bg_size, dtype=torch.float32, device="cuda") out = self.renderer.render(cur_cam, bg_color=bg_color) image = out["image"].unsqueeze(0) mask = out["alpha"].unsqueeze(0) delta_xy = find_mask_center_and_translate(image.detach(), mask.detach()) / render_resolution * 256 # (1) check if the principal points are appropriate if delta_xy[0].abs() > 10 or delta_xy[1].abs() > 10: cx -= delta_xy[0] cy -= delta_xy[1] self.pp_pools[idx_ver, idx_hor+4] = torch.tensor([cx, cy]) # Update pp_pools else: flag_principal_point = 1 num_pixs_mask = (mask > 0.5).float().sum().item() target_num_pixs = render_resolution ** 2 / (1.2 ** 2) mask_to_compute = (mask > 0.5).squeeze().detach().cpu().numpy() y_indices, x_indices = np.where(mask_to_compute > 0) if len(x_indices) == 0 or len(y_indices) == 0: # return None or some indication that there's no object in the mask continue # find the bounding box coordinates x1, y1 = np.min(x_indices), np.min(y_indices) x2, y2 = np.max(x_indices), np.max(y_indices) bbox = np.array([x1, y1, x2, y2]) extents = (bbox[2:] - bbox[:2]).max() num_pixs_mask = extents ** 2 # (2) check if the focal lengths are appropriate if abs(num_pixs_mask - target_num_pixs) > 0.05 * render_resolution ** 2: if num_pixs_mask == 0: pass else: fx = fx * np.sqrt(target_num_pixs / num_pixs_mask) fy = fy * np.sqrt(target_num_pixs / num_pixs_mask) else: flag_focal_length = 1 if flag_principal_point * flag_focal_length == 1: flag = 1 cnt += 1 images.append(image) masks.append(mask) images = torch.cat(images, dim=0) if self.enable_zero123: target_RT = { "c2w": pose, "focal_length": np.array(fx, fy), } loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.batch_train_step(images, target_RT, self.cams, step_ratio=step_ratio if self.opt.anneal_timestep else None) if self.enable_dino: loss_dino = self.guidance_dino.train_step( images, out["feature"], step_ratio=step_ratio if self.opt.anneal_timestep else None ) loss = loss + self.opt.lambda_dino * loss_dino # optimize step loss.backward() self.optimizer.step() self.optimizer.zero_grad() latlons = [mat2latlon(cam.c2w[:3, 3]) for cam in self.cams] if self.opt.opt_cam: for i, cam in enumerate(self.cams): w2c = cam.w2c @ SE3.exp(cam.cam_params.detach()).as_matrix() w2c[:2, :3] *= -1 w2c[:2, 3] *= -1 self.camera_tracks[i].append(w2c.tolist()) self.opt.ref_polars = [float(cam[0]) for cam in latlons] self.opt.ref_azimuths = [float(cam[1]) for cam in latlons] self.opt.ref_radii = [float(cam[2]) for cam in latlons] # densify and prune if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter: viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"] self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter]) self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter) if self.step % self.opt.densification_interval == 0: self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=4, max_screen_size=1) # if self.step % self.opt.opacity_reset_interval == 0: # self.renderer.gaussians.reset_opacity() if self.step % 100 == 0 and self.renderer.gaussians.max_sh_degree != 0: self.renderer.gaussians.oneupSHdegree() ender.record() torch.cuda.synchronize() t = starter.elapsed_time(ender) self.need_update = True def load_input(self, camera_path, order_path=None): # load image print(f'[INFO] load data from {camera_path}...') if order_path is not None: with open(order_path, 'r') as f: indices = json.load(f) else: indices = None with open(camera_path, 'r') as f: data = json.load(f) self.cam_params = {} for k, v in data.items(): if indices is None: self.cam_params[k] = data[k] else: if int(k) in indices or k in indices: self.cam_params[k] = data[k] if self.opt.all_views: for k, v in self.cam_params.items(): self.cam_params[k]['opt_cam'] = 1 self.cam_params[k]['flag'] = 1 else: for k, v in self.cam_params.items(): if int(self.cam_params[k]['flag']): self.cam_params[k]['opt_cam'] = 1 else: self.cam_params[k]['opt_cam'] = 0 img_paths = [v["filepath"] for k, v in self.cam_params.items() if v["flag"]] self.num_views = len(img_paths) print(f"[INFO] Number of views: {self.num_views}") for filepath in img_paths: print(filepath) images, masks = [], [] for i in range(self.num_views): img = cv2.imread(img_paths[i], cv2.IMREAD_UNCHANGED) if img.shape[-1] == 3: if self.bg_remover is None: self.bg_remover = rembg.new_session() img = rembg.remove(img, session=self.bg_remover) img = img.astype(np.float32) / 255.0 # Non-integer cropping creates non-zero mask values input_mask = (img[..., 3:] > 0.5).astype(np.float32) # white bg input_img = img[..., :3] * input_mask + (1 - input_mask) # bgr to rgb input_img = input_img[..., ::-1].copy() images.append(input_img), masks.append(input_mask) images = np.stack(images, axis=0) masks = np.stack(masks, axis=0) self.input_img = images[:self.num_views] self.input_mask = masks[:self.num_views] self.all_input_images = images self.cams = [CustomCamera(v, index=int(k), opt_pose=self.opt.opt_cam and v['opt_cam']) for k, v in self.cam_params.items() if v["flag"]] cam_centers = [mat2latlon(cam.camera_center) for cam in self.cams] self.opt.ref_polars = [float(cam[0]) for cam in cam_centers] self.opt.ref_azimuths = [float(cam[1]) for cam in cam_centers] self.opt.ref_radii = [float(cam[2]) for cam in cam_centers] self.fx = np.array([cam.fx for cam in self.cams], dtype=np.float32).mean() self.fy = np.array([cam.fy for cam in self.cams], dtype=np.float32).mean() self.cx = 128 self.cy = 128 if self.opt.opt_cam: self.camera_tracks = {} for i, cam in enumerate(self.cams): self.camera_tracks[i] = [] # Azimuth Mapping: [-180, -135): -4, [-135, -90): -3, [-90, -45): -2, [-45, 0): -1, # [0, 45): 0, [45, 90): 1, [90, 135): 2, [135, 180): 3. # Elevation Mapping: [0, 90): 0, [-90, 0): 1. # Principal Point Pool: Tensor (2, 8, 2), where: # - 2: Elevation groups, 8: Azimuth intervals, 2: x, y coordinates (init to 128). # we created a "pool" for principal points # we use these principal points to render image to make sure object is at the center self.pp_pools = torch.full((2, 8, 2), 128) if self.opt.opt_cam: self.renderer.gaussians.cam_params = [cam.cam_params for cam in self.cams[:] if cam.opt_pose] @torch.no_grad() def save_video(self, post_fix=None): xyz = self.renderer.gaussians._xyz center = self.renderer.gaussians._xyz.mean(dim=0) squared_distances = torch.sum((xyz - center) ** 2, dim=1) max_distance_squared = torch.max(squared_distances) radius = torch.sqrt(max_distance_squared) + 1.0 radius = radius.detach().cpu().numpy() render_resolution = 256 images = [] frame_rate = 30 image_size = (render_resolution, render_resolution) # Size of each image video_path = self.opt.save_path + f'_rendered_video_{post_fix}.mp4' azimuth = np.arange(0, 360, 3, dtype=np.int32) for azi in tqdm.tqdm(azimuth): target = center.detach().cpu().numpy() pose = orbit_camera(-30, azi, radius, target=target) cur_cam = FoVCamera( pose, render_resolution, render_resolution, self.cam.fovy, self.cam.fovx, self.cam.near, self.cam.far, ) out = self.renderer.render(cur_cam) img = out["image"].detach().cpu().numpy() # [3, H, W] in [0, 1] img = np.transpose(img, (1, 2, 0)) image = (img * 255).astype(np.uint8) images.append(image) images = np.stack(images, axis=0) # ~4 seconds, 120 frames at 30 fps import imageio imageio.mimwrite(video_path, images, fps=30, quality=8, macro_block_size=1) @torch.no_grad() def save_model(self, mode='geo', texture_size=1024): os.makedirs(self.opt.outdir, exist_ok=True) if mode == 'geo': path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.ply') mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh) mesh.write_ply(path) elif mode == 'geo+tex': path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.' + self.opt.mesh_format) mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh) # perform texture extraction print(f"[INFO] unwrap uv...") h = w = texture_size mesh.auto_uv() mesh.auto_normal() albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32) cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32) if self.enable_dino: feature = torch.zeros((h, w, self.renderer.gaussians.dino_feat_dim), device=self.device, dtype=torch.float32) # self.prepare_train() # tmp fix for not loading 0123 # vers = [0] # hors = [0] vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9] hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0] render_resolution = 512 import nvdiffrast.torch as dr if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'): glctx = dr.RasterizeGLContext() else: glctx = dr.RasterizeCudaContext() for ver, hor in zip(vers, hors): # render image pose = orbit_camera(ver, hor, self.cam.radius) cur_cam = FoVCamera( pose, render_resolution, render_resolution, self.cam.fovy, self.cam.fovx, self.cam.near, self.cam.far, ) cur_out = self.renderer.render(cur_cam) rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1] if self.enable_dino: features = cur_out["feature"].unsqueeze(0) # [1, 384, 512, 512] # enhance texture quality with zero123 [not working well] # if self.opt.guidance_model == 'zero123': # rgbs = self.guidance.refine(rgbs, [ver], [hor], [0]) # import kiui # kiui.vis.plot_image(rgbs) # get coordinate in texture image pose = torch.from_numpy(pose.astype(np.float32)).to(self.device) proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device) v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0) v_clip = v_cam @ proj.T rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution)) depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1] depth = depth.squeeze(0) # [H, W, 1] alpha = (rast[0, ..., 3:] > 0).float() uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft) # [1, 512, 512, 2] in [0, 1] # use normal to produce a back-project mask normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn) normal = safe_normalize(normal[0]) # rotated normal (where [0, 0, 1] always faces camera) rot_normal = normal @ pose[:3, :3] viewcos = rot_normal[..., [2]] mask = (alpha > 0) & (viewcos > 0.5) # [H, W, 1] mask = mask.view(-1) uvs = uvs.view(-1, 2).clamp(0, 1)[mask] rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous() # update texture image cur_albedo, cur_cnt = mipmap_linear_grid_put_2d( h, w, uvs[..., [1, 0]] * 2 - 1, rgbs, min_resolution=256, return_count=True, ) if self.enable_dino: features = features.view(features.shape[1], -1).permute(1, 0)[mask].contiguous() cur_feature, _ = mipmap_linear_grid_put_2d( h, w, uvs[..., [1, 0]] * 2 - 1, features, min_resolution=256, return_count=True, ) # albedo += cur_albedo # cnt += cur_cnt mask = cnt.squeeze(-1) < 0.1 albedo[mask] += cur_albedo[mask] cnt[mask] += cur_cnt[mask] if self.enable_dino: feature[mask] += cur_feature[mask] mask = cnt.squeeze(-1) > 0 albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3) if self.enable_dino: feature[mask] = feature[mask] / cnt[mask].repeat(1, feature.shape[-1]) mask = mask.view(h, w) albedo = albedo.detach().cpu().numpy() mask = mask.detach().cpu().numpy() if self.enable_dino: feature = feature.detach().cpu().numpy() # dilate texture from sklearn.neighbors import NearestNeighbors from scipy.ndimage import binary_dilation, binary_erosion inpaint_region = binary_dilation(mask, iterations=32) inpaint_region[mask] = 0 search_region = mask.copy() not_search_region = binary_erosion(search_region, iterations=3) search_region[not_search_region] = 0 search_coords = np.stack(np.nonzero(search_region), axis=-1) inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1) knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit( search_coords ) _, indices = knn.kneighbors(inpaint_coords) albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)] mesh.albedo = torch.from_numpy(albedo).to(self.device) # mesh.write(path) if self.enable_dino: feature[tuple(inpaint_coords.T)] = feature[tuple(search_coords[indices[:, 0]].T)] mesh.feature = torch.from_numpy(feature).to(self.device) mesh.write(path, self.enable_dino) else: path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply') self.renderer.gaussians.save_ply(path) print(f"[INFO] save model to {path}.") # no gui mode def train(self, iters=500): if iters > 0: self.prepare_train() for i in tqdm.trange(iters): self.train_step() # do a last prune self.renderer.gaussians.prune(min_opacity=0.01, extent=1, max_screen_size=1) if self.opt.opt_cam: for cam in self.cams: try: self.cam_params[str(cam.index)]["R"] = cam.rotation.tolist() self.cam_params[str(cam.index)]["T"] = cam.translation.tolist() except KeyError: self.cam_params[f"{cam.index:03}"]["R"] = cam.rotation.tolist() self.cam_params[f"{cam.index:03}"]["T"] = cam.translation.tolist() with open(self.opt.camera_path.replace(".json", "_updated.json"), "w") as file: json.dump(self.cam_params, file, indent=4) self.save_model(mode='model') self.save_model(mode='geo+tex') if __name__ == "__main__": import argparse from omegaconf import OmegaConf parser = argparse.ArgumentParser() parser.add_argument("--config", required=True, help="path to the yaml config file") args, extras = parser.parse_known_args() # override default config from cli opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras)) gui = GUI(opt) gui.train(opt.iters)