File size: 17,502 Bytes
16c783e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import gradio as gr
from urllib.parse import urlparse
import requests
import time
from PIL import Image
import base64
import io
import uuid
import os


def extract_property_info(prop):
    combined_prop = {}
    merge_keywords = ["allOf", "anyOf", "oneOf"]

    for keyword in merge_keywords:
        if keyword in prop:
            for subprop in prop[keyword]:
                combined_prop.update(subprop)
            del prop[keyword]

    if not combined_prop:
        combined_prop = prop.copy()

    for key in ["description", "default"]:
        if key in prop:
            combined_prop[key] = prop[key]

    return combined_prop


def detect_file_type(filename):
    audio_extensions = [".mp3", ".wav", ".flac", ".aac", ".ogg", ".m4a"]
    image_extensions = [
        ".jpg",
        ".jpeg",
        ".png",
        ".gif",
        ".bmp",
        ".tiff",
        ".svg",
        ".webp",
    ]
    video_extensions = [
        ".mp4",
        ".mov",
        ".wmv",
        ".flv",
        ".avi",
        ".avchd",
        ".mkv",
        ".webm",
    ]

    # Extract the file extension
    if isinstance(filename, str):
        extension = filename[filename.rfind(".") :].lower()

        # Check the extension against each list
        if extension in audio_extensions:
            return "audio"
        elif extension in image_extensions:
            return "image"
        elif extension in video_extensions:
            return "video"
        else:
            return "string"
    elif isinstance(filename, list):
        return "list"


def build_gradio_inputs(ordered_input_schema, example_inputs=None):
    inputs = []
    input_field_strings = """inputs = []\n"""
    names = []
    for index, (name, prop) in enumerate(ordered_input_schema):
        names.append(name)
        prop = extract_property_info(prop)
        if "enum" in prop:
            input_field = gr.Dropdown(
                choices=prop["enum"],
                label=prop.get("title"),
                info=prop.get("description"),
                value=prop.get("default"),
            )
            input_field_string = f"""inputs.append(gr.Dropdown(
    choices={prop["enum"]}, label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value="{prop.get("default")}"
))\n"""
        elif prop["type"] == "integer":
            if prop.get("minimum") and prop.get("maximum"):
                input_field = gr.Slider(
                    label=prop.get("title"),
                    info=prop.get("description"),
                    value=prop.get("default"),
                    minimum=prop.get("minimum"),
                    maximum=prop.get("maximum"),
                    step=1,
                )
                input_field_string = f"""inputs.append(gr.Slider(
    label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")},
    minimum={prop.get("minimum")}, maximum={prop.get("maximum")}, step=1,
))\n"""
            else:
                input_field = gr.Number(
                    label=prop.get("title"),
                    info=prop.get("description"),
                    value=prop.get("default"),
                )
                input_field_string = f"""inputs.append(gr.Number(
    label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
        elif prop["type"] == "number":
            if prop.get("minimum") and prop.get("maximum"):
                input_field = gr.Slider(
                    label=prop.get("title"),
                    info=prop.get("description"),
                    value=prop.get("default"),
                    minimum=prop.get("minimum"),
                    maximum=prop.get("maximum"),
                )
                input_field_string = f"""inputs.append(gr.Slider(
    label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")},
    minimum={prop.get("minimum")}, maximum={prop.get("maximum")}
))\n"""
            else:
                input_field = gr.Number(
                    label=prop.get("title"),
                    info=prop.get("description"),
                    value=prop.get("default"),
                )
                input_field_string = f"""inputs.append(gr.Number(
    label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
        elif prop["type"] == "boolean":
            input_field = gr.Checkbox(
                label=prop.get("title"),
                info=prop.get("description"),
                value=prop.get("default"),
            )
            input_field_string = f"""inputs.append(gr.Checkbox(
    label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
        elif (
            prop["type"] == "string" and prop.get("format") == "uri" and example_inputs
        ):
            input_type_example = example_inputs.get(name, None)
            if input_type_example:
                input_type = detect_file_type(input_type_example)
            else:
                input_type = None
            if input_type == "image":
                input_field = gr.Image(label=prop.get("title"), type="filepath")
                input_field_string = f"""inputs.append(gr.Image(
    label="{prop.get("title")}", type="filepath"
))\n"""
            elif input_type == "audio":
                input_field = gr.Audio(label=prop.get("title"), type="filepath")
                input_field_string = f"""inputs.append(gr.Audio(
    label="{prop.get("title")}", type="filepath"
))\n"""
            elif input_type == "video":
                input_field = gr.Video(label=prop.get("title"))
                input_field_string = f"""inputs.append(gr.Video(
    label="{prop.get("title")}"
))\n"""
            else:
                input_field = gr.File(label=prop.get("title"))
                input_field_string = f"""inputs.append(gr.File(
    label="{prop.get("title")}"
))\n"""
        else:
            input_field = gr.Textbox(
                label=prop.get("title"),
                info=prop.get("description"),
            )
            input_field_string = f"""inputs.append(gr.Textbox(
    label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}
))\n"""
        inputs.append(input_field)
        input_field_strings += f"{input_field_string}\n"

    input_field_strings += f"names = {names}\n"

    return inputs, input_field_strings, names


def build_gradio_outputs_replicate(output_types):
    outputs = []
    output_field_strings = """outputs = []\n"""
    if output_types:
        for output in output_types:
            if output == "image":
                output_field = gr.Image()
                output_field_string = "outputs.append(gr.Image())"
            elif output == "audio":
                output_field = gr.Audio(type="filepath")
                output_field_string = "outputs.append(gr.Audio(type='filepath'))"
            elif output == "video":
                output_field = gr.Video()
                output_field_string = "outputs.append(gr.Video())"
            elif output == "string":
                output_field = gr.Textbox()
                output_field_string = "outputs.append(gr.Textbox())"
            elif output == "json":
                output_field = gr.JSON()
                output_field_string = "outputs.append(gr.JSON())"
            elif output == "list":
                output_field = gr.JSON()
                output_field_string = "outputs.append(gr.JSON())"
            outputs.append(output_field)
            output_field_strings += f"{output_field_string}\n"
    else:
        output_field = gr.JSON()
        output_field_string = "outputs.append(gr.JSON())"
        outputs.append(output_field)

    return outputs, output_field_strings


def build_gradio_outputs_cog():
    pass


def process_outputs(outputs):
    output_values = []
    for output in outputs:
        if not output:
            continue
        if isinstance(output, str):
            if output.startswith("data:image"):
                base64_data = output.split(",", 1)[1]
                image_data = base64.b64decode(base64_data)
                image_stream = io.BytesIO(image_data)
                image = Image.open(image_stream)
                output_values.append(image)
            elif output.startswith("data:audio"):
                base64_data = output.split(",", 1)[1]
                audio_data = base64.b64decode(base64_data)
                audio_stream = io.BytesIO(audio_data)
                filename = f"{uuid.uuid4()}.wav"  # Change format as needed
                with open(filename, "wb") as audio_file:
                    audio_file.write(audio_stream.getbuffer())
                output_values.append(filename)
            elif output.startswith("data:video"):
                base64_data = output.split(",", 1)[1]
                video_data = base64.b64decode(base64_data)
                video_stream = io.BytesIO(video_data)
                # Here you can save the audio or return the stream for further processing
                filename = f"{uuid.uuid4()}.mp4"  # Change format as needed
                with open(filename, "wb") as video_file:
                    video_file.write(video_stream.getbuffer())
                output_values.append(filename)
            else:
                output_values.append(output)
        else:
            output_values.append(output)
    return output_values


def parse_outputs(data):
    if isinstance(data, dict):
        # Handle case where data is an object
        dict_values = []
        for value in data.values():
            extracted_values = parse_outputs(value)
            # For dict, we append instead of extend to maintain list structure within objects
            if isinstance(value, list):
                dict_values += [extracted_values]
            else:
                dict_values += extracted_values
        return dict_values
    elif isinstance(data, list):
        # Handle case where data is an array
        list_values = []
        for item in data:
            # Here we extend to flatten the list since we're already in an array context
            list_values += parse_outputs(item)
        return list_values
    else:
        # Handle primitive data types directly
        return [data]


def create_dynamic_gradio_app(
    inputs,
    outputs,
    api_url,
    api_id=None,
    replicate_token=None,
    title="",
    model_description="",
    names=[],
    local_base=False,
    hostname="0.0.0.0",
):
    expected_outputs = len(outputs)

    def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
        payload = {"input": {}}
        if api_id:
            payload["version"] = api_id
        parsed_url = urlparse(str(request.url))
        if local_base:
            base_url = f"http://{hostname}:7860"
        else:
            base_url = parsed_url.scheme + "://" + parsed_url.netloc
        for i, key in enumerate(names):
            value = args[i]
            if value and (os.path.exists(str(value))):
                value = f"{base_url}/file=" + value
            if value is not None and value != "":
                payload["input"][key] = value
        print(payload)
        headers = {"Content-Type": "application/json"}
        if replicate_token:
            headers["Authorization"] = f"Token {replicate_token}"
        print(headers)
        response = requests.post(api_url, headers=headers, json=payload)
        if response.status_code == 201:
            follow_up_url = response.json()["urls"]["get"]
            response = requests.get(follow_up_url, headers=headers)
            while response.json()["status"] != "succeeded":
                if response.json()["status"] == "failed":
                    raise gr.Error("The submission failed!")
                response = requests.get(follow_up_url, headers=headers)
                time.sleep(1)
                # TODO: Add a failing mechanism if the API gets stuck
        if response.status_code == 200:
            json_response = response.json()
            # If the output component is JSON return the entire output response
            if outputs[0].get_config()["name"] == "json":
                return json_response["output"]
            predict_outputs = parse_outputs(json_response["output"])
            processed_outputs = process_outputs(predict_outputs)
            difference_outputs = expected_outputs - len(processed_outputs)
            # If less outputs than expected, hide the extra ones
            if difference_outputs > 0:
                extra_outputs = [gr.update(visible=False)] * difference_outputs
                processed_outputs.extend(extra_outputs)
            # If more outputs than expected, cap the outputs to the expected number if
            elif difference_outputs < 0:
                processed_outputs = processed_outputs[:difference_outputs]

            return (
                tuple(processed_outputs)
                if len(processed_outputs) > 1
                else processed_outputs[0]
            )

        else:
            if response.status_code == 409:
                raise gr.Error(
                    f"Sorry, the Cog image is still processing. Try again in a bit."
                )
            raise gr.Error(f"The submission failed! Error: {response.status_code}")

    app = gr.Interface(
        fn=predict,
        inputs=inputs,
        outputs=outputs,
        title=title,
        description=model_description,
        allow_flagging="never",
    )
    return app


def create_gradio_app_script(
    inputs_string,
    outputs_string,
    api_url,
    api_id=None,
    replicate_token=None,
    title="",
    model_description="",
    local_base=False,
    hostname="0.0.0.0"
):
    headers = {"Content-Type": "application/json"}
    if replicate_token:
        headers["Authorization"] = f"Token {replicate_token}"

    if local_base:
        base_url = f'base_url = "http://{hostname}:7860"'
    else:
        base_url = """parsed_url = urlparse(str(request.url))
    base_url = parsed_url.scheme + "://" + parsed_url.netloc"""
    headers_string = f"""headers = {headers}\n"""
    api_id_value = f'payload["version"] = "{api_id}"' if api_id is not None else ""
    definition_string = """expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):"""
    payload_string = f"""payload = {{"input": {{}}}}
    {api_id_value}
    
    {base_url}
    for i, key in enumerate(names):
        value = args[i]
        if value and (os.path.exists(str(value))):
            value = f"{{base_url}}/file=" + value
        if value is not None and value != "":
            payload["input"][key] = value\n"""

    request_string = (
        f"""response = requests.post("{api_url}", headers=headers, json=payload)\n"""
    )

    result_string = f"""
    if response.status_code == 201:
        follow_up_url = response.json()["urls"]["get"]
        response = requests.get(follow_up_url, headers=headers)
        while response.json()["status"] != "succeeded":
            if response.json()["status"] == "failed":
                raise gr.Error("The submission failed!")
            response = requests.get(follow_up_url, headers=headers)
            time.sleep(1)
    if response.status_code == 200:
        json_response = response.json()
        #If the output component is JSON return the entire output response 
        if(outputs[0].get_config()["name"] == "json"):
            return json_response["output"]
        predict_outputs = parse_outputs(json_response["output"])
        processed_outputs = process_outputs(predict_outputs)
        difference_outputs = expected_outputs - len(processed_outputs)
        # If less outputs than expected, hide the extra ones
        if difference_outputs > 0:
            extra_outputs = [gr.update(visible=False)] * difference_outputs
            processed_outputs.extend(extra_outputs)
        # If more outputs than expected, cap the outputs to the expected number
        elif difference_outputs < 0:
            processed_outputs = processed_outputs[:difference_outputs]
        
        return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
    else:
        if(response.status_code == 409):
            raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
        raise gr.Error(f"The submission failed! Error: {{response.status_code}}")\n"""

    interface_string = f"""title = "{title}"
model_description = "{model_description}"

app = gr.Interface(
    fn=predict,
    inputs=inputs,
    outputs=outputs,
    title=title,
    description=model_description,
    allow_flagging="never",
)
app.launch(share=True)
"""

    app_string = f"""import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os

from utils.gradio_helpers import parse_outputs, process_outputs

{inputs_string}
{outputs_string}
{definition_string}
    {headers_string}
    {payload_string}
    {request_string}
    {result_string}
{interface_string}
"""
    return app_string