File size: 7,523 Bytes
dab2f85 1ad6c41 dab2f85 1ad6c41 dab2f85 1ad6c41 dab2f85 1ad6c41 dab2f85 cab47c8 dab2f85 cab47c8 dab2f85 cab47c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import requests
import torch
import os
from tqdm import tqdm
# import wandb
from ultralytics import YOLO
import cv2
import numpy as np
import pandas as pd
from skimage.transform import resize
from skimage import img_as_bool
from skimage.morphology import convex_hull_image
import json
# wandb.init(mode='disabled')
def tableConvexHull(img, masks):
mask=np.zeros(masks[0].shape,dtype="bool")
for msk in masks:
temp=msk.cpu().detach().numpy();
chull = convex_hull_image(temp);
mask=np.bitwise_or(mask,chull)
return mask
def cls_exists(clss, cls):
indices = torch.where(clss==cls)
return len(indices[0])>0
def empty_mask(img):
mask = np.zeros(img.shape[:2], dtype="uint8")
return np.array(mask, dtype=bool)
def extract_img_mask(img_model, img, config):
res_dict = {
'status' : 1
}
res = get_predictions(img_model, img, config)
if res['status']==-1:
res_dict['status'] = -1
elif res['status']==0:
res_dict['mask']=empty_mask(img)
else:
masks = res['masks']
boxes = res['boxes']
clss = boxes[:, 5]
mask = extract_mask(img, masks, boxes, clss, 0)
res_dict['mask'] = mask
return res_dict
def get_predictions(model, img2, config):
res_dict = {
'status': 1
}
try:
for result in model.predict(source=img2, verbose=False, retina_masks=config['rm'],\
imgsz=config['sz'], conf=config['conf'], stream=True,\
classes=config['classes']):
try:
res_dict['masks'] = result.masks.data
res_dict['boxes'] = result.boxes.data
del result
return res_dict
except Exception as e:
res_dict['status'] = 0
return res_dict
except:
res_dict['status'] = -1
return res_dict
def extract_mask(img, masks, boxes, clss, cls):
if not cls_exists(clss, cls):
return empty_mask(img)
indices = torch.where(clss==cls)
c_masks = masks[indices]
mask_arr = torch.any(c_masks, dim=0).bool()
mask_arr = mask_arr.cpu().detach().numpy()
mask = mask_arr
return mask
def get_masks(img, model, img_model, flags, configs):
response = {
'status': 1
}
ans_masks = []
img2 = img
# ***** Getting paragraph and text masks
res = get_predictions(model, img2, configs['paratext'])
if res['status']==-1:
response['status'] = -1
return response
elif res['status']==0:
for i in range(2): ans_masks.append(empty_mask(img))
else:
masks, boxes = res['masks'], res['boxes']
clss = boxes[:, 5]
for cls in range(2):
mask = extract_mask(img, masks, boxes, clss, cls)
ans_masks.append(mask)
# ***** Getting image and table masks
res2 = get_predictions(model, img2, configs['imgtab'])
if res2['status']==-1:
response['status'] = -1
return response
elif res2['status']==0:
for i in range(2): ans_masks.append(empty_mask(img))
else:
masks, boxes = res2['masks'], res2['boxes']
clss = boxes[:, 5]
if cls_exists(clss, 2):
img_res = extract_img_mask(img_model, img, configs['image'])
if img_res['status'] == 1:
img_mask = img_res['mask']
else:
response['status'] = -1
return response
else:
img_mask = empty_mask(img)
ans_masks.append(img_mask)
if cls_exists(clss, 3):
indices = torch.where(clss==3)
tbl_mask = tableConvexHull(img, masks[indices])
else:
tbl_mask = empty_mask(img)
ans_masks.append(tbl_mask)
if not configs['paratext']['rm']:
h, w, c = img.shape
for i in range(4):
ans_masks[i] = img_as_bool(resize(ans_masks[i], (h, w)))
response['masks'] = ans_masks
return response
def overlay(image, mask, color, alpha, resize=None):
"""Combines image and its segmentation mask into a single image.
https://www.kaggle.com/code/purplejester/showing-samples-with-segmentation-mask-overlay
Params:
image: Training image. np.ndarray,
mask: Segmentation mask. np.ndarray,
color: Color for segmentation mask rendering. tuple[int, int, int] = (255, 0, 0)
alpha: Segmentation mask's transparency. float = 0.5,
resize: If provided, both image and its mask are resized before blending them together.
tuple[int, int] = (1024, 1024))
Returns:
image_combined: The combined image. np.ndarray
"""
color = color[::-1]
colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
if resize is not None:
image = cv2.resize(image.transpose(1, 2, 0), resize)
image_overlay = cv2.resize(image_overlay.transpose(1, 2, 0), resize)
image_combined = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
return image_combined
model_path = 'models'
general_model_name = 'e50_aug.pt'
image_model_name = 'e100_img.pt'
general_model = YOLO(os.path.join(model_path, general_model_name))
image_model = YOLO(os.path.join(model_path, image_model_name))
image_path = 'examples'
sample_name = ['0040da34-25c8-4a5a-a6aa-36733ea3b8eb.png', '00fb93d5-7c67-4851-ad08-f23ed2159467.png',
'0050a8ee-382b-447e-9c5b-8506d9507bef.png', '0064d3e2-3ba2-4332-a28f-3a165f2b84b1.png',
'019384d0-88c2-46ba-8f1b-bf7432f50ea3.png']
sample_path = [os.path.join(image_path, sample) for sample in sample_name]
flags = {
'hist': False,
'bz': False
}
configs = {}
configs['paratext'] = {
'sz' : 640,
'conf': 0.25,
'rm': True,
'classes': [0, 1]
}
configs['imgtab'] = {
'sz' : 640,
'conf': 0.35,
'rm': True,
'classes': [2, 3]
}
configs['image'] = {
'sz' : 640,
'conf': 0.35,
'rm': True,
'classes': [0]
}
def evaluate(img_path, model=general_model, img_model=image_model,\
configs=configs, flags=flags):
# print('starting')
img = cv2.imread(img_path)
res = get_masks(img, general_model, image_model, flags, configs)
if res['status']==-1:
for idx in configs.keys():
configs[idx]['rm'] = False
return evaluate(img, model, img_model, flags, configs)
else:
masks = res['masks']
color_map = {
0 : (255, 0, 0),
1 : (0, 255, 0),
2 : (0, 0, 255),
3 : (255, 255, 0),
}
for i, mask in enumerate(masks):
img = overlay(image=img, mask=mask, color=color_map[i], alpha=0.4)
# print('finishing')
return img
# output = evaluate(img_path=sample_path, model=general_model, img_model=image_model,\
# configs=configs, flags=flags)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=evaluate,
inputs=inputs_image,
outputs=outputs_image,
title="Document Layout Segmentor",
examples=sample_path,
cache_examples=True,
).launch() |