File size: 13,294 Bytes
100edb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import streamlit as st
import torch
# from Pangu-Weather import *
import numpy as np
from datetime import datetime
import numpy as np
import onnx
import onnxruntime as ort
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import io
def pangu_config_data():
st.subheader("Pangu-Weather Model Data Input")
# Detailed data description section
st.markdown("""
**Input Data Requirements:**
Pangu-Weather uses two NumPy arrays to represent initial atmospheric conditions:
1. **Surface Data (input_surface.npy)**
- Shape: `(4, 721, 1440)`
- Variables: MSLP, U10, V10, T2M in this exact order.
- **MSLP:** Mean Sea Level Pressure
- **U10:** 10-meter Eastward Wind
- **V10:** 10-meter Northward Wind
- **T2M:** 2-meter Temperature
2. **Upper-Air Data (input_upper.npy)**
- Shape: `(5, 13, 721, 1440)`
- Variables (first dim): Z, Q, T, U, V in this exact order
- **Z:** Geopotential (Note: if your source provides geopotential height, multiply by 9.80665 to get geopotential)
- **Q:** Specific Humidity
- **T:** Temperature
- **U:** Eastward Wind
- **V:** Northward Wind
- Pressure Levels (second dim): 1000hPa, 925hPa, 850hPa, 700hPa, 600hPa, 500hPa, 400hPa, 300hPa, 250hPa, 200hPa, 150hPa, 100hPa, 50hPa in this exact order.
**Spatial & Coordinate Details:**
- Latitude dimension (721 points) ranges from 90°N to -90°S with a 0.25° spacing.
- Longitude dimension (1440 points) ranges from 0° to 359.75°E with a 0.25° spacing.
- Data should be single precision floats (`.astype(np.float32)`).
**Supported Data Sources:**
- ERA5 initial fields (strongly recommended).
- ECMWF initial fields (e.g., HRES forecast) can be used, but may result in a slight accuracy drop.
- Other types of initial fields are not currently supported due to potentially large discrepancies in data fields.
**Converting Your Data:**
- ERA5 `.nc` files can be converted to `.npy` using the `netCDF4` Python package.
- ECMWF `.grib` files can be converted to `.npy` using the `pygrib` Python package.
- Ensure the order of variables and pressure levels is exactly as described above.
""")
# File uploaders for surface and upper data separately
st.markdown("### Upload Your Input Data Files")
input_surface_file = st.file_uploader(
"Upload input_surface.npy",
type=["npy"],
key="pangu_input_surface"
)
input_upper_file = st.file_uploader(
"Upload input_upper.npy",
type=["npy"],
key="pangu_input_upper"
)
st.markdown("---")
st.markdown("### References & Resources")
st.markdown("""
- **Research Paper:** [Accurate medium-range global weather forecasting with 3D neural networks](https://www.nature.com/articles/s41586-023-06185-3)
- [Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast](https://arxiv.org/abs/2211.02556)
- **GitHub Source Code:** [Pangu-Weather on GitHub](https://github.com/198808xc/Pangu-Weather?tab=readme-ov-file)
""")
return input_surface_file, input_upper_file
def inference_24hrs(input, input_surface):
model_24 = onnx.load('Pangu-Weather/pangu_weather_24.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_24 = ort.InferenceSession('Pangu-Weather/pangu_weather_24.onnx', sess_options=options, providers=['CPUExecutionProvider'])
# Run the inference session
output, output_surface = ort_session_24.run(None, {'input':input, 'input_surface':input_surface})
return output, output_surface
@st.cache_resource
def inference_6hrs(input, input_surface):
model_6 = onnx.load('Pangu-Weather/pangu_weather_6.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_6 = ort.InferenceSession('Pangu-Weather/pangu_weather_6.onnx', sess_options=options, providers=['CPUExecutionProvider'])
# Run the inference session
output, output_surface = ort_session_6.run(None, {'input':input, 'input_surface':input_surface})
return output, output_surface
@st.cache_resource
def inference_1hr(input, input_surface):
model_1 = onnx.load('Pangu-Weather/pangu_weather_1.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_1 = ort.InferenceSession('Pangu-Weather/pangu_weather_1.onnx', sess_options=options, providers=['CPUExecutionProvider'])
# Run the inference session
output, output_surface = ort_session_1.run(None, {'input':input, 'input_surface':input_surface})
return output, output_surface
@st.cache_resource
def inference_3hrs(input, input_surface):
model_3 = onnx.load('Pangu-Weather/pangu_weather_3.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_3 = ort.InferenceSession('Pangu-Weather/pangu_weather_3.onnx', sess_options=options, providers=['CPUExecutionProvider'])
# Run the inference session
output, output_surface = ort_session_3.run(None, {'input':input, 'input_surface':input_surface})
return output, output_surface
@st.cache_resource
def inference_custom_hrs(input, input_surface, forecast_hours):
# Ensure forecast_hours is a multiple of 24
if forecast_hours % 24 != 0:
raise ValueError("forecast_hours must be a multiple of 24.")
# Load the 24-hour model
model_24 = onnx.load('Pangu-Weather/pangu_weather_24.onnx')
# Configure ONNX Runtime session
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
options.intra_op_num_threads = 1
# Using CPUExecutionProvider for simplicity
ort_session_24 = ort.InferenceSession('Pangu-Weather/pangu_weather_24.onnx', sess_options=options, providers=['CPUExecutionProvider'])
# Calculate how many 24-hour steps we need
steps = forecast_hours // 24
# Run the 24-hour model repeatedly
for i in range(steps):
output, output_surface = ort_session_24.run(None, {'input': input, 'input_surface': input_surface})
input, input_surface = output, output_surface
# Return the final predictions after completing all steps
return input, input_surface
def plot_pangu_output(upper_data, surface_data, out_upper, out_surface):
# Coordinate setup
lat = np.linspace(90, -90, 721) # Latitude grid
lon = np.linspace(0, 360, 1440) # Longitude grid
# Variable and level names
upper_vars = ["Z (Geopotential)", "Q (Specific Humidity)", "T (Temperature)", "U (Eastward Wind)", "V (Northward Wind)"]
upper_levels = ["1000hPa", "925hPa", "850hPa", "700hPa", "600hPa", "500hPa",
"400hPa", "300hPa", "250hPa", "200hPa", "150hPa", "100hPa", "50hPa"]
# Extract numeric hPa values for selection
upper_hpa_values = [int(l.replace("hPa", "")) for l in upper_levels]
surface_vars = ["MSLP", "U10", "V10", "T2M"]
# --- Initial Data Visualization ---
st.subheader("Initial Data Visualization")
init_col1, init_col2 = st.columns([1,1])
with init_col1:
init_data_choice = st.selectbox("Data Source", ["Upper-Air Data", "Surface Data"], key="init_data_choice")
with init_col2:
if init_data_choice == "Upper-Air Data":
init_var = st.selectbox("Variable", upper_vars, key="init_upper_var")
else:
init_var = st.selectbox("Variable", surface_vars, key="init_surface_var")
if init_data_choice == "Upper-Air Data":
selected_level_hpa_init = st.select_slider(
"Select Pressure Level (hPa)",
options=upper_hpa_values,
value=850, # Default to 850hPa
help="Select the pressure level in hPa.",
key="init_level_hpa_slider"
)
# Find the corresponding index from the selected hPa value
selected_level_index_init = upper_hpa_values.index(selected_level_hpa_init)
selected_var_index_init = upper_vars.index(init_var)
data_to_plot_init = upper_data[selected_var_index_init, selected_level_index_init, :, :]
title_init = f"Initial Upper-Air: {init_var} at {selected_level_hpa_init}hPa"
else:
selected_var_index_init = surface_vars.index(init_var)
data_to_plot_init = surface_data[selected_var_index_init, :, :]
title_init = f"Initial Surface: {init_var}"
# Plot initial data
fig_init, ax_init = plt.subplots(figsize=(10, 5), subplot_kw={'projection': ccrs.PlateCarree()})
ax_init.set_title(title_init)
im_init = ax_init.imshow(data_to_plot_init, extent=[lon.min(), lon.max(), lat.min(), lat.max()],
origin='lower', cmap='coolwarm', transform=ccrs.PlateCarree())
ax_init.coastlines()
plt.colorbar(im_init, ax=ax_init, orientation='horizontal', pad=0.05)
st.pyplot(fig_init)
# --- Predicted Data Visualization ---
st.subheader("Predicted Data Visualization")
pred_col1, pred_col2 = st.columns([1,1])
with pred_col1:
pred_data_choice = st.selectbox("Data Source", ["Upper-Air Data", "Surface Data"], key="pred_data_choice")
with pred_col2:
if pred_data_choice == "Upper-Air Data":
pred_var = st.selectbox("Variable", upper_vars, key="pred_upper_var")
else:
pred_var = st.selectbox("Variable", surface_vars, key="pred_surface_var")
if pred_data_choice == "Upper-Air Data":
selected_level_hpa_pred = st.select_slider(
"Select Pressure Level (hPa)",
options=upper_hpa_values,
value=850, # Default to 850hPa
help="Select the pressure level in hPa.",
key="pred_level_hpa_slider"
)
selected_level_index_pred = upper_hpa_values.index(selected_level_hpa_pred)
selected_var_index_pred = upper_vars.index(pred_var)
data_to_plot_pred = out_upper[selected_var_index_pred, selected_level_index_pred, :, :]
title_pred = f"Predicted Upper-Air: {pred_var} at {selected_level_hpa_pred}hPa"
else:
selected_var_index_pred = surface_vars.index(pred_var)
data_to_plot_pred = out_surface[selected_var_index_pred, :, :]
title_pred = f"Predicted Surface: {pred_var}"
# Plot predicted data
fig_pred, ax_pred = plt.subplots(figsize=(10, 5), subplot_kw={'projection': ccrs.PlateCarree()})
ax_pred.set_title(title_pred)
im_pred = ax_pred.imshow(data_to_plot_pred, extent=[lon.min(), lon.max(), lat.min(), lat.max()],
origin='lower', cmap='coolwarm', transform=ccrs.PlateCarree())
ax_pred.coastlines()
plt.colorbar(im_pred, ax=ax_pred, orientation='horizontal', pad=0.05)
st.pyplot(fig_pred)
# --- Download Buttons ---
st.subheader("Download Predicted Data")
# Convert out_upper and out_surface to binary format for download
buffer_upper = io.BytesIO()
np.save(buffer_upper, out_upper)
buffer_upper.seek(0)
buffer_surface = io.BytesIO()
np.save(buffer_surface, out_surface)
buffer_surface.seek(0)
st.download_button(label="Download Predicted Upper-Air Data",
data=buffer_upper,
file_name="predicted_upper.npy",
mime="application/octet-stream")
st.download_button(label="Download Predicted Surface Data",
data=buffer_surface,
file_name="predicted_surface.npy",
mime="application/octet-stream") |