Spaces:
Sleeping
Sleeping
File size: 12,731 Bytes
100edb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import streamlit as st
import torch
import random
import numpy as np
import yaml
import logging
import os
import matplotlib.pyplot as plt
from pathlib import Path
import tempfile
import traceback
from data_utils import (
save_uploaded_files,
load_dataset,
)
from inference_utils import run_inference
from config_utils import load_config
from plot_utils import plot_prithvi_output, plot_aurora_output
from prithvi_utils import (
prithvi_config_ui,
initialize_prithvi_model,
prepare_prithvi_batch
)
from aurora_utils import aurora_config_ui, prepare_aurora_batch, initialize_aurora_model
from pangu_utils import (
pangu_config_data,
inference_1hr,
inference_3hrs,
inference_6hrs,
inference_24hrs,
inference_custom_hrs,
plot_pangu_output,
)
from fengwu_utils import (fengwu_config_data, inference_6hrs_fengwu, inference_12hrs_fengwu, inference_custom_hrs_fengwu, plot_fengwu_output)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set page configuration
st.set_page_config(
page_title="Weather Data Processor",
layout="wide",
initial_sidebar_state="expanded",
)
header_col1, header_col2 = st.columns([4, 1])
with header_col1:
st.title("π¦οΈ Weather & Climate Data Processor and Forecaster")
with header_col2:
st.markdown("### Select a Model")
selected_model = st.selectbox(
"",
options=["Pangu-Weather", "FengWu", "Aurora", "Climax", "Prithvi", "LSTM"],
index=0,
key="model_selector",
help="Select the model you want to use."
)
st.write("---")
# --- Layout: Two Columns ---
left_col, right_col = st.columns([1, 2])
with left_col:
st.header("π§ Configuration")
# Dynamically show configuration UI based on selected model
if selected_model == "Prithvi":
(config, uploaded_surface_files, uploaded_vertical_files,
clim_surf_path, clim_vert_path, config_path, weights_path) = prithvi_config_ui()
elif selected_model == "Aurora":
uploaded_files = aurora_config_ui()
elif selected_model == "Pangu-Weather":
input_surface_file, input_upper_file = pangu_config_data()
elif selected_model == "FengWu":
input_file1_fengwu, input_file2_fengwu = fengwu_config_data()
else:
# Generic data upload for other models
st.subheader(f"{selected_model} Model Data Upload")
st.markdown("### Drag and Drop Your Data Files Here")
uploaded_files = st.file_uploader(
f"Upload Data Files for {selected_model}",
accept_multiple_files=True,
key=f"{selected_model.lower()}_uploader",
type=["nc", "netcdf", "nc4"],
)
st.write("---")
# --- Forecast Duration Selection ---
st.subheader("Forecast Duration")
forecast_options = ["1 hour", "3 hours", "6 hours", "24 hours", "Custom"]
selected_duration = st.selectbox(
"Select forecast duration",
forecast_options,
index=3, # Default to 24 hours
help="Select how many hours to forecast."
)
custom_hours = None
if selected_duration == "Custom":
custom_hours = st.number_input(
"Enter custom forecast hours",
min_value=24,
max_value=480,
value=48,
step=24,
help="Enter the number of hours you want to forecast."
)
st.write("---")
# Run Inference button
if st.button("π Run Inference"):
with right_col:
st.header("π Inference Progress & Visualization")
# Set seeds and device
try:
torch.jit.enable_onednn_fusion(True)
if torch.cuda.is_available():
device = torch.device("cuda")
st.write(f"Using device: **{torch.cuda.get_device_name()}**")
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
else:
device = torch.device("cpu")
st.write("Using device: **CPU**")
random.seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
torch.manual_seed(42)
np.random.seed(42)
except Exception:
st.error("Error initializing device:")
st.error(traceback.format_exc())
st.stop()
# Use a spinner while running inference
with st.spinner("Running inference, please wait..."):
# Initialize and run inference for selected model
if selected_model == "Prithvi":
model, in_mu, in_sig, output_sig, static_mu, static_sig = initialize_prithvi_model(
config, config_path, weights_path, device
)
batch = prepare_prithvi_batch(
uploaded_surface_files, uploaded_vertical_files, clim_surf_path, clim_vert_path, device
)
out = run_inference(selected_model, model, batch, device)
# Store results
st.session_state['prithvi_out'] = out
st.session_state['prithvi_done'] = True
elif selected_model == "Aurora":
if uploaded_files:
save_uploaded_files(uploaded_files)
ds = load_dataset(st.session_state.temp_file_paths)
if ds is not None:
batch = prepare_aurora_batch(ds)
model = initialize_aurora_model(device)
out = run_inference(selected_model, model, batch, device)
st.session_state['aurora_out'] = out
st.session_state['aurora_ds_subset'] = ds
st.session_state['aurora_done'] = True
else:
st.error("Failed to load dataset for Aurora.")
st.stop()
else:
st.error("Please upload data files for Aurora.")
st.stop()
elif selected_model == "FengWu":
if input_file1_fengwu and input_file2_fengwu:
try:
input1 = np.load(input_file1_fengwu)
input2 = np.load(input_file2_fengwu)
if selected_duration == "1 hour":
st.warning("1hr inference is not yet available on this model.")
elif selected_duration == "3 hours":
st.warning("3hrs inference is not yet available on this model.")
elif selected_duration == "6 hours":
output_fengwu = inference_6hrs_fengwu(input1, input2)
elif selected_duration == "12 hours":
output_fengwu = inference_12hrs_fengwu(input1, input2)
else:
output_fengwu = inference_custom_hrs_fengwu(input1, input2, custom_hours)
st.session_state['output_fengwu'] = output_fengwu
st.session_state['fengwu_done'] = True
st.session_state['input_fengwu'] = input_file2_fengwu
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.error("Please upload data files for Aurora.")
st.stop()
elif selected_model == "Pangu-Weather":
if input_surface_file and input_upper_file:
try:
surface_data = np.load(input_surface_file)
upper_data = np.load(input_upper_file)
# Decide which inference function to use based on selection
if selected_duration == "1 hour":
out_upper, out_surface = inference_1hr(upper_data, surface_data)
elif selected_duration == "3 hours":
out_upper, out_surface = inference_3hrs(upper_data, surface_data)
elif selected_duration == "6 hours":
out_upper, out_surface = inference_6hrs(upper_data, surface_data)
elif selected_duration == "24 hours":
out_upper, out_surface = inference_24hrs(upper_data, surface_data)
else:
out_upper, out_surface = inference_custom_hrs(upper_data, surface_data, custom_hours)
# Store results in session_state
st.session_state['pangu_upper_data'] = upper_data
st.session_state['pangu_surface_data'] = surface_data
st.session_state['pangu_out_upper'] = out_upper
st.session_state['pangu_out_surface'] = out_surface
st.session_state['pangu_done'] = True
st.write("**Forecast Results:**")
st.write("Upper Data Forecast Shape:", out_upper.shape)
st.write("Surface Data Forecast Shape:", out_surface.shape)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.error("Please upload data files for Pangu-Weather.")
st.stop()
else:
st.warning("Inference not implemented for this model.")
st.stop()
# Visualization after inference is done
if selected_model == "Prithvi":
if 'prithvi_done' in st.session_state and st.session_state['prithvi_done']:
plot_prithvi_output(st.session_state['prithvi_out'])
elif selected_model == "Aurora":
if 'aurora_done' in st.session_state and st.session_state['aurora_done']:
plot_aurora_output(st.session_state['aurora_out'], st.session_state['aurora_ds_subset'])
elif selected_model == "FengWu":
if 'fengwu_done' in st.session_state and st.session_state['fengwu_done']:
plot_fengwu_output(st.session_state['input_fengwu'], st.session_state['output_fengwu'])
elif selected_model == "Pangu-Weather":
if 'pangu_done' in st.session_state and st.session_state['pangu_done']:
plot_pangu_output(
st.session_state['pangu_upper_data'],
st.session_state['pangu_surface_data'],
st.session_state['pangu_out_upper'],
st.session_state['pangu_out_surface']
)
else:
st.info("No visualization implemented for this model.")
else:
# If not running inference now, but we have previously computed results, show them
with right_col:
st.header("π₯οΈ Visualization & Progress")
# Check which model was selected and if we have done inference before
if selected_model == "Prithvi" and 'prithvi_done' in st.session_state and st.session_state['prithvi_done']:
plot_prithvi_output(st.session_state['prithvi_out'])
elif selected_model == "Aurora" and 'aurora_done' in st.session_state and st.session_state['aurora_done']:
plot_aurora_output(st.session_state['aurora_out'], st.session_state['aurora_ds_subset'])
elif selected_model == "Pangu-Weather" and 'pangu_done' in st.session_state and st.session_state['pangu_done']:
plot_pangu_output(
st.session_state['pangu_upper_data'],
st.session_state['pangu_surface_data'],
st.session_state['pangu_out_upper'],
st.session_state['pangu_out_surface']
)
elif selected_model == "FengWu" and 'output_fengwu' in st.session_state and st.session_state['fengwu_done']:
plot_fengwu_output(st.session_state['input_fengwu'], st.session_state['output_fengwu'])
else:
st.info("Awaiting inference to display results.")
|