Spaces:
Sleeping
Sleeping
File size: 84,062 Bytes
100edb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 |
import streamlit as st
import torch
import random
import numpy as np
import yaml
from pathlib import Path
from io import BytesIO
import random
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from huggingface_hub import hf_hub_download, snapshot_download
import tempfile
import traceback
import functools as ft
import os
import random
import re
from collections import defaultdict
from datetime import datetime, timedelta
from pathlib import Path
import h5py
import numpy as np
import pandas as pd
import torch
from torch import Tensor
from torch.utils.data import Dataset
import logging
from Prithvi import *
def preproc(batch: list[dict], padding: dict[tuple[int]]) -> dict[str, Tensor]:
"""Prepressing function for MERRA2 Dataset
Args:
batch (dict): List of training samples, each sample should be a
dictionary with the following keys::
'sur_static': Numpy array of shape (3, lat, lon). For each pixel (lat, lon), the first dimension indexes sin(lat), cos(lon), sin(lon).
'sur_vals': Torch tensor of shape (parameter, time, lat, lon).
'sur_tars': Torch tensor of shape (parameter, time, lat, lon).
'ulv_vals': Torch tensor of shape (parameter, level, time, lat, lon).
'ulv_tars': Torch tensor of shape (parameter, level, time, lat, lon).
'sur_climate': Torch tensor of shape (parameter, lat, lon)
'ulv_climate': Torch tensor of shape (parameter, level, lat, lon)
'lead_time': Integer.
'input_time': Integer.
padding: Dictionary with keys 'level', 'lat', 'lon', each of dim 2.
Returns:
Dictionary with the following keys::
'x': [batch, time, parameter, lat, lon]
'y': [batch, parameter, lat, lon]
'static': [batch, parameter, lat, lon]
'lead_time': [batch]
'input_time': [batch]
'climate (Optional)': [batch, parameter, lat, lon]
Note:
Here, for x and y, 'parameter' is [surface parameter, upper level,
parameter x level]. Similarly for the static information we have
[sin(lat), cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod),
...].
""" # noqa: E501
b0 = batch[0]
nbatch = len(batch)
data_keys = set(b0.keys())
essential_keys = {
"sur_static",
"sur_vals",
"sur_tars",
"ulv_vals",
"ulv_tars",
"input_time",
"lead_time",
}
climate_keys = {
"sur_climate",
"ulv_climate",
}
all_keys = essential_keys | climate_keys
if not essential_keys.issubset(data_keys):
raise ValueError("Missing essential keys.")
if not data_keys.issubset(all_keys):
raise ValueError("Unexpected keys in batch.")
# Bring all tensors from the batch into a single tensor
upl_x = torch.empty((nbatch, *b0["ulv_vals"].shape))
upl_y = torch.empty((nbatch, *b0["ulv_tars"].shape))
sur_x = torch.empty((nbatch, *b0["sur_vals"].shape))
sur_y = torch.empty((nbatch, *b0["sur_tars"].shape))
sur_sta = torch.empty((nbatch, *b0["sur_static"].shape))
lead_time = torch.empty((nbatch,), dtype=torch.float32)
input_time = torch.empty((nbatch,), dtype=torch.float32)
for i, rec in enumerate(batch):
sur_x[i] = rec["sur_vals"]
sur_y[i] = rec["sur_tars"]
upl_x[i] = rec["ulv_vals"]
upl_y[i] = rec["ulv_tars"]
sur_sta[i] = rec["sur_static"]
lead_time[i] = rec["lead_time"]
input_time[i] = rec["input_time"]
return_value = {
"lead_time": lead_time,
"input_time": input_time,
}
# Reshape (batch, parameter, level, time, lat, lon) ->
# (batch, time, parameter, level, lat, lon)
upl_x = upl_x.permute((0, 3, 1, 2, 4, 5))
upl_y = upl_y.permute((0, 3, 1, 2, 4, 5))
# Reshape (batch, parameter, time, lat, lon) ->
# (batch, time, parameter, lat, lon)
sur_x = sur_x.permute((0, 2, 1, 3, 4))
sur_y = sur_y.permute((0, 2, 1, 3, 4))
# Pad
padding_2d = (*padding["lon"], *padding["lat"])
def pad2d(x):
return torch.nn.functional.pad(x, padding_2d, mode="constant", value=0)
padding_3d = (*padding["lon"], *padding["lat"], *padding["level"])
def pad3d(x):
return torch.nn.functional.pad(x, padding_3d, mode="constant", value=0)
sur_x = pad2d(sur_x).contiguous()
upl_x = pad3d(upl_x).contiguous()
sur_y = pad2d(sur_y).contiguous()
upl_y = pad3d(upl_y).contiguous()
return_value["static"] = pad2d(sur_sta).contiguous()
# Remove time for targets
upl_y = torch.squeeze(upl_y, 1)
sur_y = torch.squeeze(sur_y, 1)
# We stack along the combined parameter x level dimension
return_value["x"] = torch.cat(
(sur_x, upl_x.view(*upl_x.shape[:2], -1, *upl_x.shape[4:])), dim=2
)
return_value["y"] = torch.cat(
(sur_y, upl_y.view(upl_y.shape[0], -1, *upl_y.shape[3:])), dim=1
)
if climate_keys.issubset(data_keys):
sur_climate = torch.empty((nbatch, *b0["sur_climate"].shape))
ulv_climate = torch.empty((nbatch, *b0["ulv_climate"].shape))
for i, rec in enumerate(batch):
sur_climate[i] = rec["sur_climate"]
ulv_climate[i] = rec["ulv_climate"]
sur_climate = pad2d(sur_climate)
ulv_climate = pad3d(ulv_climate)
return_value["climate"] = torch.cat(
(
sur_climate,
ulv_climate.view(nbatch, -1, *ulv_climate.shape[3:]),
),
dim=1,
)
return return_value
def input_scalers(
surf_vars: list[str],
vert_vars: list[str],
levels: list[float],
surf_path: str | Path,
vert_path: str | Path,
) -> tuple[Tensor, Tensor]:
"""Reads the input scalers
Args:
surf_vars: surface variables to be used.
vert_vars: vertical variables to be used.
levels: MERRA2 levels to use.
surf_path: path to surface scalers file.
vert_path: path to vertical level scalers file.
Returns:
mu (Tensor): mean values
var (Tensor): varience values
"""
with h5py.File(Path(surf_path), "r", libver="latest") as surf_file:
stats = [x.decode().lower() for x in surf_file["statistic"][()]]
mu_idx = stats.index("mu")
sig_idx = stats.index("sigma")
s_mu = torch.tensor([surf_file[k][()][mu_idx] for k in surf_vars])
s_sig = torch.tensor([surf_file[k][()][sig_idx] for k in surf_vars])
with h5py.File(Path(vert_path), "r", libver="latest") as vert_file:
stats = [x.decode().lower() for x in vert_file["statistic"][()]]
mu_idx = stats.index("mu")
sig_idx = stats.index("sigma")
lvl = vert_file["lev"][()]
l_idx = [np.where(lvl == v)[0].item() for v in levels]
v_mu = np.array([vert_file[k][()][mu_idx, l_idx] for k in vert_vars])
v_sig = np.array([vert_file[k][()][sig_idx, l_idx] for k in vert_vars])
v_mu = torch.from_numpy(v_mu).view(-1)
v_sig = torch.from_numpy(v_sig).view(-1)
mu = torch.cat((s_mu, v_mu), dim=0).to(torch.float32)
sig = torch.cat((s_sig, v_sig), dim=0).to(torch.float32).clamp(1e-4, 1e4)
return mu, sig
def static_input_scalers(
scalar_path: str | Path, stat_vars: list[str], unscaled_params: int = 7
) -> tuple[Tensor, Tensor]:
scalar_path = Path(scalar_path)
with h5py.File(scalar_path, "r", libver="latest") as scaler_file:
stats = [x.decode().lower() for x in scaler_file["statistic"][()]]
mu_idx = stats.index("mu")
sig_idx = stats.index("sigma")
mu = torch.tensor([scaler_file[k][()][mu_idx] for k in stat_vars])
sig = torch.tensor([scaler_file[k][()][sig_idx] for k in stat_vars])
z = torch.zeros(unscaled_params, dtype=mu.dtype, device=mu.device)
o = torch.ones(unscaled_params, dtype=sig.dtype, device=sig.device)
mu = torch.cat((z, mu), dim=0).to(torch.float32)
sig = torch.cat((o, sig), dim=0).to(torch.float32)
return mu, sig.clamp(1e-4, 1e4)
def output_scalers(
surf_vars: list[str],
vert_vars: list[str],
levels: list[float],
surf_path: str | Path,
vert_path: str | Path,
) -> Tensor:
surf_path = Path(surf_path)
vert_path = Path(vert_path)
with h5py.File(surf_path, "r", libver="latest") as surf_file:
svars = torch.tensor([surf_file[k][()] for k in surf_vars])
with h5py.File(vert_path, "r", libver="latest") as vert_file:
lvl = vert_file["lev"][()]
l_idx = [np.where(lvl == v)[0].item() for v in levels]
vvars = np.array([vert_file[k][()][l_idx] for k in vert_vars])
vvars = torch.from_numpy(vvars).view(-1)
var = torch.cat((svars, vvars), dim=0).to(torch.float32).clamp(1e-7, 1e7)
return var
class SampleSpec:
"""
A data class to collect the information used to define a sample.
"""
def __init__(
self,
inputs: tuple[pd.Timestamp, pd.Timestamp],
lead_time: int,
target: pd.Timestamp | list[pd.Timestamp],
):
"""
Args:
inputs: Tuple of timestamps. In ascending order.
lead_time: Lead time. In hours.
target: Timestamp of the target. Can be before or after the inputs.
"""
if not inputs[0] < inputs[1]:
raise ValueError(
"Timestamps in `inputs` should be in strictly ascending order."
)
self.inputs = inputs
self.input_time = (inputs[1] - inputs[0]).total_seconds() / 3600
self.lead_time = lead_time
self.target = target
self.times = [*inputs, target]
self.stat_times = [inputs[-1]]
@property
def climatology_info(self) -> tuple[int, int]:
"""Get the required climatology info.
:return: information required to obtain climatology data. Essentially
this is the day of the year and hour of the day of the target
timestamp, with the former restricted to the interval [1, 365].
:rtype: tuple
"""
return (min(self.target.dayofyear, 365), self.target.hour)
@property
def year(self) -> int:
return self.inputs[1].year
@property
def dayofyear(self) -> int:
return self.inputs[1].dayofyear
@property
def hourofday(self) -> int:
return self.inputs[1].hour
def _info_str(self) -> str:
iso_8601 = "%Y-%m-%dT%H:%M:%S"
return (
f"Issue time: {self.inputs[1].strftime(iso_8601)}\n"
f"Lead time: {self.lead_time} hours ahead\n"
f"Input delta: {self.input_time} hours\n"
f"Target time: {self.target.strftime(iso_8601)}"
)
@classmethod
def get(cls, timestamp: pd.Timestamp, dt: int, lead_time: int):
"""Given a timestamp and lead time, generates a SampleSpec object
describing the sample further.
Args:
timestamp: Timstamp of the sample, Ie this is the larger of the two
input timstamps.
dt: Time between input samples, in hours.
lead_time: Lead time. In hours.
Returns:
SampleSpec
""" # noqa: E501
assert dt > 0, "dt should be possitive"
lt = pd.to_timedelta(lead_time, unit="h")
dt = pd.to_timedelta(dt, unit="h")
if lead_time >= 0:
timestamp_target = timestamp + lt
else:
timestamp_target = timestamp - dt + lt
spec = cls(
inputs=(timestamp - dt, timestamp),
lead_time=lead_time,
target=timestamp_target,
)
return spec
def __repr__(self) -> str:
return self._info_str()
def __str__(self) -> str:
return self._info_str()
class Merra2Dataset(Dataset):
"""MERRA2 dataset. The dataset unifies surface and vertical data as well as
optional climatology.
Samples come in the form of a dictionary. Not all keys support all
variables, yet the general ordering of dimensions is
parameter, level, time, lat, lon
Note:
Data is assumed to be in NetCDF files containing daily data at 3-hourly
intervals. These follow the naming patterns
MERRA2_sfc_YYYYMMHH.nc and MERRA_pres_YYYYMMHH.nc and can be located in
two different locations. Optional climatology data comes from files
climate_surface_doyDOY_hourHOD.nc and
climate_vertical_doyDOY_hourHOD.nc.
Note:
`_get_valid_timestamps` assembles a set of all timestamps for which
there is data (with hourly resolutions). The result is stored in
`_valid_timestamps`. `_get_valid_climate_timestamps` does the same with
climatology data and stores it in `_valid_climate_timestamps`.
Based on this information, `samples` generates a list of valid samples,
stored in `samples`. Here the format is::
[
[
(timestamp 1, lead time A),
(timestamp 1, lead time B),
(timestamp 1, lead time C),
],
[
(timestamp 2, lead time D),
(timestamp 2, lead time E),
]
]
That is, the outer list iterates over timestamps (init times), the
inner over lead times. Only valid entries are stored.
"""
valid_vertical_vars = [
"CLOUD",
"H",
"OMEGA",
"PL",
"QI",
"QL",
"QV",
"T",
"U",
"V",
]
valid_surface_vars = [
"EFLUX",
"GWETROOT",
"HFLUX",
"LAI",
"LWGAB",
"LWGEM",
"LWTUP",
"PRECTOT",
"PS",
"QV2M",
"SLP",
"SWGNT",
"SWTNT",
"T2M",
"TQI",
"TQL",
"TQV",
"TS",
"U10M",
"V10M",
"Z0M",
]
valid_static_surface_vars = ["FRACI", "FRLAND", "FROCEAN", "PHIS"]
valid_levels = [
34.0,
39.0,
41.0,
43.0,
44.0,
45.0,
48.0,
51.0,
53.0,
56.0,
63.0,
68.0,
71.0,
72.0,
]
timedelta_input = pd.to_timedelta(3, unit="h")
def __init__(
self,
time_range: tuple[str | pd.Timestamp, str | pd.Timestamp],
lead_times: list[int],
input_times: list[int],
data_path_surface: str | Path,
data_path_vertical: str | Path,
climatology_path_surface: str | Path | None = None,
climatology_path_vertical: str | Path | None = None,
surface_vars: list[str] | None = None,
static_surface_vars: list[str] | None = None,
vertical_vars: list[str] | None = None,
levels: list[float] | None = None,
roll_longitudes: int = 0,
positional_encoding: str = "absolute",
rtype: type = np.float32,
dtype: torch.dtype = torch.float32,
) -> None:
"""
Args:
data_path_surface: Location of surface data.
data_path_vertical: Location of vertical data.
climatology_path_surface: Location of (optional) surface
climatology.
climatology_path_vertical: Location of (optional) vertical
climatology.
surface_vars: Surface variables.
static_surface_vars: Static surface variables.
vertical_vars: Vertical variables.
levels: Levels.
time_range: Used to subset data.
lead_times: Lead times for generalized forecasting.
roll_longitudes: Set to non-zero value to data by random amount
along longitude dimension.
position_encoding: possible values are
['absolute' (default), 'fourier'].
'absolute' returns lat lon encoded in 3 dimensions using sine
and cosine
'fourier' returns lat/lon to be encoded by model
<any other key> returns lat/lon to be encoded by model
rtype: numpy data type used during read
dtype: torch data type of data output
"""
self.time_range = (
pd.to_datetime(time_range[0]),
pd.to_datetime(time_range[1]),
)
self.lead_times = lead_times
self.input_times = input_times
self._roll_longitudes = list(range(roll_longitudes + 1))
self._uvars = vertical_vars or self.valid_vertical_vars
self._level = levels or self.valid_levels
self._svars = surface_vars or self.valid_surface_vars
self._sstat = static_surface_vars or self.valid_static_surface_vars
self._nuvars = len(self._uvars)
self._nlevel = len(self._level)
self._nsvars = len(self._svars)
self._nsstat = len(self._sstat)
self.rtype = rtype
self.dtype = dtype
self.positional_encoding = positional_encoding
self._data_path_surface = Path(data_path_surface)
self._data_path_vertical = Path(data_path_vertical)
self.dir_exists(self._data_path_surface)
self.dir_exists(self._data_path_vertical)
self._get_coordinates()
self._climatology_path_surface = Path(climatology_path_surface) or None
self._climatology_path_vertical = (
Path(climatology_path_vertical) or None
)
self._require_clim = (
self._climatology_path_surface is not None
and self._climatology_path_vertical is not None
)
if self._require_clim:
self.dir_exists(self._climatology_path_surface)
self.dir_exists(self._climatology_path_vertical)
elif (
climatology_path_surface is None
and climatology_path_vertical is None
):
self._climatology_path_surface = None
self._climatology_path_vertical = None
else:
raise ValueError(
"Either both or neither of"
"`climatology_path_surface` and"
"`climatology_path_vertical` should be None."
)
if not set(self._svars).issubset(set(self.valid_surface_vars)):
raise ValueError("Invalid surface variable.")
if not set(self._sstat).issubset(set(self.valid_static_surface_vars)):
raise ValueError("Invalid static surface variable.")
if not set(self._uvars).issubset(set(self.valid_vertical_vars)):
raise ValueError("Inalid vertical variable.")
if not set(self._level).issubset(set(self.valid_levels)):
raise ValueError("Invalid level.")
@staticmethod
def dir_exists(path: Path) -> None:
if not path.is_dir():
raise ValueError(f"Directory {path} does not exist.")
@property
def upper_shape(self) -> tuple:
"""Returns the vertical variables shape
Returns:
tuple: vertical variable shape in the following order::
[VAR, LEV, TIME, LAT, LON]
"""
return self._nuvars, self._nlevel, 2, 361, 576
@property
def surface_shape(self) -> tuple:
"""Returns the surface variables shape
Returns:
tuple: surafce shape in the following order::
[VAR, LEV, TIME, LAT, LON]
"""
return self._nsvars, 2, 361, 576
def data_file_surface(self, timestamp: pd.Timestamp) -> Path:
"""Build the surfcae data file name based on timestamp
Args:
timestamp: a timestamp
Returns:
Path: constructed path
"""
pattern = "MERRA2_sfc_%Y%m%d.nc"
data_file = self._data_path_surface / timestamp.strftime(pattern)
return data_file
def data_file_vertical(self, timestamp: pd.Timestamp) -> Path:
"""Build the vertical data file name based on timestamp
Args:
timestamp: a timestamp
Returns:
Path: constructed path
"""
pattern = "MERRA_pres_%Y%m%d.nc"
data_file = self._data_path_vertical / timestamp.strftime(pattern)
return data_file
def data_file_surface_climate(
self,
timestamp: pd.Timestamp | None = None,
dayofyear: int | None = None,
hourofday: int | None = None,
) -> Path:
"""
Returns the path to a climatology file based either on a timestamp or
the dayofyear / hourofday combination.
Args:
timestamp: A timestamp.
dayofyear: Day of the year. 1 to 366.
hourofday: Hour of the day. 0 to 23.
Returns:
Path: Path to climatology file.
"""
if timestamp is not None and (
(dayofyear is not None) or (hourofday is not None)
):
raise ValueError(
"Provide either timestamp or both dayofyear and hourofday."
)
if timestamp is not None:
dayofyear = min(timestamp.dayofyear, 365)
hourofday = timestamp.hour
file_name = f"climate_surface_doy{dayofyear:03}_hour{hourofday:02}.nc"
data_file = self._climatology_path_surface / file_name
return data_file
def data_file_vertical_climate(
self,
timestamp: pd.Timestamp | None = None,
dayofyear: int | None = None,
hourofday: int | None = None,
) -> Path:
"""Returns the path to a climatology file based either on a timestamp
or the dayofyear / hourofday combination.
Args:
timestamp: A timestamp. dayofyear: Day of the year. 1 to 366.
hourofday: Hour of the day. 0 to 23.
Returns:
Path: Path to climatology file.
"""
if timestamp is not None and (
(dayofyear is not None) or (hourofday is not None)
):
raise ValueError(
"Provide either timestamp or both dayofyear and hourofday."
)
if timestamp is not None:
dayofyear = min(timestamp.dayofyear, 365)
hourofday = timestamp.hour
file_name = f"climate_vertical_doy{dayofyear:03}_hour{hourofday:02}.nc"
data_file = self._climatology_path_vertical / file_name
return data_file
def _get_coordinates(self) -> None:
"""
Obtains the coordiantes (latitudes and longitudes) from a single data
file.
"""
timestamp = next(iter(self.valid_timestamps))
file = self.data_file_surface(timestamp)
with h5py.File(file, "r", libver="latest") as handle:
self.lats = lats = handle["lat"][()].astype(self.rtype)
self.lons = lons = handle["lon"][()].astype(self.rtype)
deg_to_rad = np.pi / 180
self._embed_lat = np.sin(lats * deg_to_rad).reshape(-1, 1)
self._embed_lon = np.empty((2, 1, len(lons)), dtype=self.rtype)
self._embed_lon[0, 0] = np.cos(lons * deg_to_rad)
self._embed_lon[1, 0] = np.sin(lons * deg_to_rad)
@ft.cached_property
def lats(self) -> np.ndarray:
timestamp = next(iter(self.valid_timestamps))
file = self.data_file_surface(timestamp)
with h5py.File(file, "r", libver="latest") as handle:
return handle["lat"][()].astype(self.rtype)
@ft.cached_property
def lons(self) -> np.ndarray:
timestamp = next(iter(self.valid_timestamps))
file = self.data_file_surface(timestamp)
with h5py.File(file, "r", libver="latest") as handle:
return handle["lon"][()].astype(self.rtype)
@ft.cached_property
def position_signal(self) -> np.ndarray:
"""Generates the "position signal" that is part of the static
features.
Returns:
Tensor: Torch tensor of dimension (parameter, lat, lon) containing
sin(lat), cos(lon), sin(lon).
"""
latitudes, longitudes = np.meshgrid(
self.lats, self.lons, indexing="ij"
)
if self.positional_encoding == "absolute":
latitudes = latitudes / 360 * 2.0 * np.pi
longitudes = longitudes / 360 * 2.0 * np.pi
sur_static = np.stack(
[np.sin(latitudes), np.cos(longitudes), np.sin(longitudes)],
axis=0,
)
else:
sur_static = np.stack([latitudes, longitudes], axis=0)
sur_static = sur_static.astype(self.rtype)
return sur_static
@ft.cached_property
def valid_timestamps(self) -> set[pd.Timestamp]:
"""Generates list of valid timestamps based on available files. Only
timestamps for which both surface and vertical information is available
are considered valid.
Returns:
list: list of timestamps
"""
s_glob = self._data_path_surface.glob("MERRA2_sfc_????????.nc")
s_files = [os.path.basename(f) for f in s_glob]
v_glob = self._data_path_surface.glob("MERRA_pres_????????.nc")
v_files = [os.path.basename(f) for f in v_glob]
s_re = re.compile(r"MERRA2_sfc_(\d{8}).nc\Z")
v_re = re.compile(r"MERRA_pres_(\d{8}).nc\Z")
fmt = "%Y%m%d"
s_times = {
(datetime.strptime(m[1], fmt))
for f in s_files
if (m := s_re.match(f))
}
v_times = {
(datetime.strptime(m[1], fmt))
for f in v_files
if (m := v_re.match(f))
}
times = s_times.intersection(v_times)
# Each file contains a day at 3 hour intervals
times = {
t + timedelta(hours=i) for i in range(0, 24, 3) for t in times
}
start_time, end_time = self.time_range
times = {pd.Timestamp(t) for t in times if start_time <= t <= end_time}
return times
@ft.cached_property
def valid_climate_timestamps(self) -> set[tuple[int, int]]:
"""Generates list of "timestamps" (dayofyear, hourofday) for which
climatology data is present. Only instances for which surface and
vertical data is available are considered valid.
Returns:
list: List of tuples describing valid climatology instances.
"""
if not self._require_clim:
return set()
s_glob = self._climatology_path_surface.glob(
"climate_surface_doy???_hour??.nc"
)
s_files = [os.path.basename(f) for f in s_glob]
v_glob = self._climatology_path_vertical.glob(
"climate_vertical_doy???_hour??.nc"
)
v_files = [os.path.basename(f) for f in v_glob]
s_re = re.compile(r"climate_surface_doy(\d{3})_hour(\d{2}).nc\Z")
v_re = re.compile(r"climate_vertical_doy(\d{3})_hour(\d{2}).nc\Z")
s_times = {
(int(m[1]), int(m[2])) for f in s_files if (m := s_re.match(f))
}
v_times = {
(int(m[1]), int(m[2])) for f in v_files if (m := v_re.match(f))
}
times = s_times.intersection(v_times)
return times
def _data_available(self, spec: SampleSpec) -> bool:
"""
Checks whether data is available for a given SampleSpec object. Does so
using the internal sets with available data previously constructed. Not
by checking the file system.
Args:
spec: SampleSpec object as returned by SampleSpec.get
Returns:
bool: if data is availability.
"""
valid = set(spec.times).issubset(self.valid_timestamps)
if self._require_clim:
sci = spec.climatology_info
ci = set(sci) if isinstance(sci, list) else set([sci]) # noqa: C405
valid &= ci.issubset(self.valid_climate_timestamps)
return valid
@ft.cached_property
def samples(self) -> list[tuple[pd.Timestamp, int, int]]:
"""
Generates list of all valid samlpes.
Returns:
list: List of tuples (timestamp, input time, lead time).
"""
valid_samples = []
dts = [(it, lt) for it in self.input_times for lt in self.lead_times]
for timestamp in sorted(self.valid_timestamps):
timestamp_samples = []
for it, lt in dts:
spec = SampleSpec.get(timestamp, -it, lt)
if self._data_available(spec):
timestamp_samples.append((timestamp, it, lt))
if timestamp_samples:
valid_samples.append(timestamp_samples)
return valid_samples
def _to_torch(
self,
data: dict[str, Tensor | list[Tensor]],
dtype: torch.dtype = torch.float32,
) -> dict[str, Tensor | list[Tensor]]:
out = {}
for k, v in data.items():
if isinstance(v, list):
out[k] = [torch.from_numpy(x).to(dtype) for x in v]
else:
out[k] = torch.from_numpy(v).to(dtype)
return out
def _lat_roll(
self, data: dict[str, Tensor | list[Tensor]], n: int
) -> dict[str, Tensor | list[Tensor]]:
out = {}
for k, v in data.items():
if isinstance(v, list):
out[k] = [torch.roll(x, shifts=n, dims=-1) for x in v]
else:
out[k] = torch.roll(v, shifts=n, dims=-1)
return out
def _read_static_data(
self, file: str | Path, doy: int, hod: int
) -> np.ndarray:
with h5py.File(file, "r", libver="latest") as handle:
lats_surf = handle["lat"]
lons_surf = handle["lon"]
nll = (len(lats_surf), len(lons_surf))
npos = len(self.position_signal)
ntime = 4
nstat = npos + ntime + self._nsstat
data = np.empty((nstat, *nll), dtype=self.rtype)
for i, key in enumerate(self._sstat, start=npos + ntime):
data[i] = handle[key][()].astype(dtype=self.rtype)
# [possition signal], cos(doy), sin(doy), cos(hod), sin(hod)
data[0:npos] = self.position_signal
data[npos + 0] = np.cos(2 * np.pi * doy / 366)
data[npos + 1] = np.sin(2 * np.pi * doy / 366)
data[npos + 2] = np.cos(2 * np.pi * hod / 24)
data[npos + 3] = np.sin(2 * np.pi * hod / 24)
return data
def _read_surface(
self, tidx: int, nll: tuple[int, int], handle: h5py.File
) -> np.ndarray:
data = np.empty((self._nsvars, *nll), dtype=self.rtype)
for i, key in enumerate(self._svars):
data[i] = handle[key][tidx][()].astype(dtype=self.rtype)
return data
def _read_levels(
self, tidx: int, nll: tuple[int, int], handle: h5py.File
) -> np.ndarray:
lvls = handle["lev"][()]
lidx = self._level_idxs(lvls)
data = np.empty((self._nuvars, self._nlevel, *nll), dtype=self.rtype)
for i, key in enumerate(self._uvars):
data[i] = handle[key][tidx, lidx][()].astype(dtype=self.rtype)
return np.ascontiguousarray(np.flip(data, axis=1))
def _level_idxs(self, lvls):
lidx = [np.argwhere(lvls == int(lvl)).item() for lvl in self._level]
return sorted(lidx)
@staticmethod
def _date_to_tidx(date: datetime | pd.Timestamp, handle: h5py.File) -> int:
if isinstance(date, pd.Timestamp):
date = date.to_pydatetime()
time = handle["time"]
t0 = time.attrs["begin_time"][()].item()
d0 = f"{time.attrs['begin_date'][()].item()}"
offset = datetime.strptime(d0, "%Y%m%d")
times = [offset + timedelta(minutes=int(t + t0)) for t in time[()]]
return times.index(date)
def _read_data(
self, file_pair: tuple[str, str], date: datetime
) -> dict[str, np.ndarray]:
s_file, v_file = file_pair
with h5py.File(s_file, "r", libver="latest") as shandle:
lats_surf = shandle["lat"]
lons_surf = shandle["lon"]
nll = (len(lats_surf), len(lons_surf))
tidx = self._date_to_tidx(date, shandle)
sdata = self._read_surface(tidx, nll, shandle)
with h5py.File(v_file, "r", libver="latest") as vhandle:
lats_vert = vhandle["lat"]
lons_vert = vhandle["lon"]
nll = (len(lats_vert), len(lons_vert))
tidx = self._date_to_tidx(date, vhandle)
vdata = self._read_levels(tidx, nll, vhandle)
data = {"vert": vdata, "surf": sdata}
return data
def _read_climate(
self, file_pair: tuple[str, str]
) -> dict[str, np.ndarray]:
s_file, v_file = file_pair
with h5py.File(s_file, "r", libver="latest") as shandle:
lats_surf = shandle["lat"]
lons_surf = shandle["lon"]
nll = (len(lats_surf), len(lons_surf))
sdata = np.empty((self._nsvars, *nll), dtype=self.rtype)
for i, key in enumerate(self._svars):
sdata[i] = shandle[key][()].astype(dtype=self.rtype)
with h5py.File(v_file, "r", libver="latest") as vhandle:
lats_vert = vhandle["lat"]
lons_vert = vhandle["lon"]
nll = (len(lats_vert), len(lons_vert))
lvls = vhandle["lev"][()]
lidx = self._level_idxs(lvls)
vdata = np.empty(
(self._nuvars, self._nlevel, *nll), dtype=self.rtype
)
for i, key in enumerate(self._uvars):
vdata[i] = vhandle[key][lidx][()].astype(dtype=self.rtype)
data = {
"vert": np.ascontiguousarray(np.flip(vdata, axis=1)),
"surf": sdata,
}
return data
def get_data_from_sample_spec(
self, spec: SampleSpec
) -> dict[str, Tensor | int | float]:
"""Loads and assembles sample data given a SampleSpec object.
Args:
spec (SampleSpec): Full details regarding the data to be loaded
Returns:
dict: Dictionary with the following keys::
'sur_static': Torch tensor of shape [parameter, lat, lon]. For
each pixel (lat, lon), the first 7 dimensions index sin(lat),
cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod).
Where doy is the day of the year [1, 366] and hod the hour of
the day [0, 23].
'sur_vals': Torch tensor of shape [parameter, time, lat, lon].
'sur_tars': Torch tensor of shape [parameter, time, lat, lon].
'ulv_vals': Torch tensor of shape [parameter, level, time, lat, lon].
'ulv_tars': Torch tensor of shape [parameter, level, time, lat, lon].
'sur_climate': Torch tensor of shape [parameter, lat, lon].
'ulv_climate': Torch tensor of shape [paramter, level, lat, lon].
'lead_time': Float.
'input_time': Float.
""" # noqa: E501
# We assemble the unique timestamps for which we need data.
vals_required = {*spec.times}
stat_required = {*spec.stat_times}
# We assemble the unique data files from which we need value data
vals_file_map = defaultdict(list)
for t in vals_required:
data_files = (
self.data_file_surface(t),
self.data_file_vertical(t),
)
vals_file_map[data_files].append(t)
# We assemble the unique data files from which we need static data
stat_file_map = defaultdict(list)
for t in stat_required:
data_files = (
self.data_file_surface(t),
self.data_file_vertical(t),
)
stat_file_map[data_files].append(t)
# Load the value data
data = {}
for data_files, times in vals_file_map.items():
for time in times:
data[time] = self._read_data(data_files, time)
# Combine times
sample_data = {}
input_upl = np.stack([data[t]["vert"] for t in spec.inputs], axis=2)
sample_data["ulv_vals"] = input_upl
target_upl = data[spec.target]["vert"]
sample_data["ulv_tars"] = target_upl[:, :, None]
input_sur = np.stack([data[t]["surf"] for t in spec.inputs], axis=1)
sample_data["sur_vals"] = input_sur
target_sur = data[spec.target]["surf"]
sample_data["sur_tars"] = target_sur[:, None]
# Load the static data
data_files, times = stat_file_map.popitem()
time = times[0].dayofyear, times[0].hour
sample_data["sur_static"] = self._read_static_data(
data_files[0], *time
)
# If required load the surface data
if self._require_clim:
ci_year, ci_hour = spec.climatology_info
surf_file = self.data_file_surface_climate(
dayofyear=ci_year,
hourofday=ci_hour,
)
vert_file = self.data_file_vertical_climate(
dayofyear=ci_year,
hourofday=ci_hour,
)
clim_data = self._read_climate((surf_file, vert_file))
sample_data["sur_climate"] = clim_data["surf"]
sample_data["ulv_climate"] = clim_data["vert"]
# Move the data from numpy to torch
sample_data = self._to_torch(sample_data, dtype=self.dtype)
# Optionally roll
if len(self._roll_longitudes) > 0:
roll_by = random.choice(self._roll_longitudes)
sample_data = self._lat_roll(sample_data, roll_by)
# Now that we have rolled, we can add the static data
sample_data["lead_time"] = spec.lead_time
sample_data["input_time"] = spec.input_time
return sample_data
def get_data(
self, timestamp: pd.Timestamp, input_time: int, lead_time: int
) -> dict[str, Tensor | int]:
"""
Loads data based on timestamp and lead time.
Args:
timestamp: Timestamp.
input_time: time between input samples.
lead_time: lead time.
Returns:
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
'lead_time'.
"""
spec = SampleSpec.get(timestamp, -input_time, lead_time)
sample_data = self.get_data_from_sample_spec(spec)
return sample_data
def __getitem__(self, idx: int) -> dict[str, Tensor | int]:
"""
Loads data based on sample index and random choice of sample.
Args:
idx: Sample index.
Returns:
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
'lead_time', 'input_time'.
"""
sample_set = self.samples[idx]
timestamp, input_time, lead_time, *nsteps = random.choice(sample_set)
sample_data = self.get_data(timestamp, input_time, lead_time)
return sample_data
def __len__(self):
return len(self.samples)
from functools import cached_property
from importlib.metadata import version
from torch import Tensor
from torch.utils.checkpoint import checkpoint
if version("torch") > "2.3.0":
from torch.nn.attention import SDPBackend, sdpa_kernel
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# DropPath code is straight from timm
# (https://huggingface.co/spaces/Roll20/pet_score/blame/main/lib/timm/models/layers/drop.py)
def drop_path(
x: Tensor,
drop_prob: float = 0.0,
training: bool = False,
scale_by_keep: bool = True,
) -> Tensor:
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks). Taken form timm.
Args:
x (Tensor): Input tensor.
drop_prob (float): Probability of dropping `x`, defaults to 0.
training (bool): Whether model is in in traingin of eval mode,
defaults to False.
scale_by_keep (bool): Whether the output should scaled by
(`1 - drop_prob`), defaults to True.
Returns:
Tensor: Tensor that may have randomly dropped with proability
`drop_path`
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
"""
def __init__(
self, drop_prob: float | None = None, scale_by_keep: bool = True
) -> None:
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x: Tensor) -> Tensor:
"""Runs drop path on input tensor
Args:
x: input
Returns:
tensor: output after drop_path
"""
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
class Mlp(nn.Module):
"""
Multi layer perceptron.
"""
def __init__(
self, features: int, hidden_features: int, dropout: float = 0.0
) -> None:
"""
Args:
features: Input/output dimension.
hidden_features: Hidden dimension.
dropout: Dropout.
"""
super().__init__()
self.net = nn.Sequential(
nn.Linear(features, hidden_features),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_features, features),
nn.Dropout(dropout),
)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tesnor): Tensor of shape [..., channel]
Returns:
Tenosr: Tensor of same shape as x.
"""
return self.net(x)
class LayerNormPassThrough(nn.LayerNorm):
"""Normalising layer that allows the attention mask to be passed through"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(
self, d: tuple[Tensor, Tensor | None]
) -> tuple[Tensor, Tensor | None]:
"""Forwards function
Args:
d (tuple): tuple of the data tensor and the attention mask
Returns:
output (Tensor): normalised output data
attn_mask (Tensor): the attention mask that was passed in
"""
input, attn_mask = d
output = F.layer_norm(
input, self.normalized_shape, self.weight, self.bias, self.eps
)
return output, attn_mask
class MultiheadAttention(nn.Module):
"""Multihead attention layer for inputs of shape
[..., sequence, features].
"""
def __init__(self, features: int, n_heads: int, dropout: float) -> None:
"""
Args:
features: Number of features for inputs to the layer.
n_heads: Number of attention heads. Should be a factor of features.
(I.e. the layer uses features // n_heads.)
dropout: Dropout.
""" # noqa: E501
super().__init__()
if (features % n_heads) != 0:
raise ValueError(
f"Features '{features}' is not divisible by heads '{n_heads}'."
)
self.features = features
self.n_heads = n_heads
self.dropout = dropout
self.qkv_layer = torch.nn.Linear(features, features * 3, bias=False)
self.w_layer = torch.nn.Linear(features, features, bias=False)
def forward(self, d: tuple[Tensor, Tensor | None]) -> Tensor:
"""
Args:
d (tuple): tuple containing Tensor of shape [..., sequence, features] and the attention mask
Returns:
Tensor: Tensor of shape [..., sequence, features]
""" # noqa: E501
x, attn_mask = d
if not x.shape[-1] == self.features:
raise ValueError(
f"Expecting tensor with last dimension size {self.features}."
)
passenger_dims = x.shape[:-2]
B = passenger_dims.numel()
S = x.shape[-2]
C = x.shape[-1]
x = x.reshape(B, S, C)
# x [B, S, C]
# q, k, v [B, H, S, C/H]
q, k, v = (
self.qkv_layer(x)
.view(B, S, self.n_heads, 3 * (C // self.n_heads))
.transpose(1, 2)
.chunk(chunks=3, dim=3)
)
# Let us enforce either flash (A100+) or memory efficient attention.
if version("torch") > "2.3.0":
with sdpa_kernel(
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
):
# x [B, H, S, C//H]
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=self.dropout
)
else:
with torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=False, enable_mem_efficient=True
):
# x [B, H, S, C//H]
x = F.scaled_dot_product_attention(
q, k, v, dropout_p=self.dropout
)
# x [B, S, C]
x = x.transpose(1, 2).view(B, S, C)
# x [B, S, C]
x = self.w_layer(x)
# Back to input shape
x = x.view(*passenger_dims, S, self.features)
return x
class Transformer(nn.Module):
"""
Transformer for inputs of shape [..., S, features].
"""
def __init__(
self,
features: int,
mlp_multiplier: int,
n_heads: int,
dropout: float,
drop_path: float,
) -> None:
"""
Args:
features: Number of features for inputs to the layer.
mlp_multiplier: Model uses features*mlp_multiplier hidden units.
n_heads: Number of attention heads. Should be a factor of features.
(I.e. the layer uses features // n_heads.) dropout: Dropout.
drop_path: DropPath.
"""
super().__init__()
self.features = features
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self.drop_path = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.attention = nn.Sequential(
LayerNormPassThrough(features),
MultiheadAttention(features, n_heads, dropout),
)
self.ff = nn.Sequential(
nn.LayerNorm(features),
Mlp(
features=features,
hidden_features=features * mlp_multiplier,
dropout=dropout,
),
)
def forward(self, d: tuple[Tensor, Tensor | None]) -> Tensor:
"""
Args:
x: Tensor of shape [..., sequence, features]
Returns:
Tensor: Tensor of shape [..., sequence, features]
"""
x, attn_mask = d
if not x.shape[-1] == self.features:
raise ValueError(
f"Expecting tensor with last dimension size {self.features}."
)
attention_x = self.attention(d)
x = x + self.drop_path(attention_x)
x = x + self.drop_path(self.ff(x))
return x
class _Shift(nn.Module):
"""Private base class for the shifter. This allows some behaviour to be
easily handled when the shifter isn't used.
"""
def __init__(self):
super().__init__()
self._shifted = False
@torch.no_grad()
def reset(self) -> None:
"""
Resets the bool tracking whether the data is shifted
"""
self._shifted: bool = False
def forward(self, data: Tensor) -> tuple[Tensor, dict[bool, None]]:
return data, {True: None, False: None}
class SWINShift(_Shift):
"""
Handles the shifting of patches similar to how SWIN works. However if we
shift the latitudes then the poles will wrap and potentially that might be
problematic. The possition tokens should handle it but masking is safer.
"""
def __init__(
self,
mu_shape: tuple[int, int],
global_shape: tuple[int, int],
local_shape: tuple[int, int],
patch_shape: tuple[int, int],
n_context_tokens: int = 2,
) -> None:
"""
Args:
mu_shape: the shape to the masking units
global_shape: number of global patches in lat and lon
local_shape: size of the local patches
patch_shape: patch size
n_context_token: number of additional context tokens at start of
_each_ local sequence
"""
super().__init__()
self._mu_shape = ms = mu_shape
self._g_shape = gs = global_shape
self._l_shape = ls = local_shape
self._p_shape = ps = patch_shape
self._lat_patch = (gs[0], ls[0], gs[1], ls[1])
self._n_context_tokens = n_context_tokens
self._g_shift_to = tuple(
int(0.5 * x / p) for x, p in zip(ms, ps, strict=False)
)
self._g_shift_from = tuple(
-int(0.5 * x / p) for x, p in zip(ms, ps, strict=False)
)
# Define the attention masks for the shifted MaxViT.
nglobal = global_shape[0] * global_shape[1]
nlocal = (
local_shape[0] * local_shape[1] + self._n_context_tokens
) # "+ 1" for leadtime
lm = torch.ones((nglobal, 1, nlocal, nlocal), dtype=bool)
mwidth = int(0.5 * local_shape[1]) * local_shape[0]
lm[
: gs[1],
:,
self._n_context_tokens : mwidth + self._n_context_tokens,
self._n_context_tokens : mwidth + self._n_context_tokens,
] = False
self.register_buffer("local_mask", lm)
gm = torch.ones((nlocal, 1, nglobal, nglobal), dtype=bool)
gm[: int(0.5 * ls[1]) * ls[0], :, : gs[1], : gs[1]] = False
self.register_buffer("global_mask", gm)
def _to_grid_global(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the global/local setting back to the
lat/lon grid setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the global/local setting
"""
nbatch, *other = x.shape
y1 = x.view(nbatch, *self._g_shape, *self._l_shape, -1)
y2 = y1.permute(0, 5, 1, 3, 2, 4).contiguous()
s = y2.shape
return y2.view((nbatch, -1, s[2] * s[3], s[4] * s[5]))
def _to_grid_local(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the local/global setting to the
lat/lon grid setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the lat/lon setting.
"""
x = x.transpose(2, 1).contiguous()
return self._to_grid_global(x)
def _from_grid_global(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the lat/lon grid to the global/local
setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the global/local setting
"""
nbatch, *other = x.shape
z1 = x.view(nbatch, -1, *self._lat_patch)
z2 = z1.permute(0, 2, 4, 3, 5, 1).contiguous()
s = z2.shape
return z2.view(nbatch, s[1] * s[2], s[3] * s[4], -1)
def _from_grid_local(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the lat/lon grid to the local/global
setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the local/global setting
"""
x = self._from_grid_global(x)
return x.transpose(2, 1).contiguous()
def _shift(self, x: Tensor) -> Tensor:
"""
Shifts data in the gridded lat/lon setting by half the mask unit shape
Args:
x: data to be shifted
Returns:
x: either the hsifted or unshifted data
"""
shift = self._g_shift_from if self._shifted else self._g_shift_to
x_shifted = torch.roll(x, shift, (-2, -1))
self._shifted = not self._shifted
return x_shifted
def _sep_lt(self, x: Tensor) -> tuple[Tensor, Tensor]:
"""
Seperate off the leadtime from the local patches
Args:
x: data to have leadtime removed from
Returns:
lt: leadtime
x: data without the lead time in the local patch
"""
lt_it = x[:, : self._n_context_tokens, :, :]
x_stripped = x[:, self._n_context_tokens :, :, :]
return lt_it, x_stripped
def forward(self, data: Tensor) -> tuple[Tensor, Tensor]:
"""Shift or unshift the the data depending on whether the data is
already shifted, as defined by self._shifte.
Args:
data: data to be shifted
Returns:
Tensor: shifted data Tensor
"""
lt, x = self._sep_lt(data)
x_grid = self._to_grid_local(x)
x_shifted = self._shift(x_grid)
x_patched = self._from_grid_local(x_shifted)
# Mask has to be repeated based on batch size
n_batch = x_grid.shape[0]
local_rep = [n_batch] + [1] * (self.local_mask.ndim - 1)
global_rep = [n_batch] + [1] * (self.global_mask.ndim - 1)
if self._shifted:
attn_mask = {
True: self.local_mask.repeat(local_rep),
False: self.global_mask.repeat(global_rep),
}
else:
attn_mask = {True: None, False: None}
return torch.cat((lt, x_patched), axis=1), attn_mask
class LocalGlobalLocalBlock(nn.Module):
"""
Applies alternating block and grid attention. Given a parameter n_blocks,
the entire module contains 2*n_blocks+1 transformer blocks. The first,
third, ..., last apply local (block) attention. The second, fourth, ...
global (grid) attention.
This is heavily inspired by
Tu et al. "MaxViT: Multi-Axis Vision Transformer"
(https://arxiv.org/abs/2204.01697).
"""
def __init__(
self,
features: int,
mlp_multiplier: int,
n_heads: int,
dropout: float,
n_blocks: int,
drop_path: float,
shifter: nn.Module | None = None,
checkpoint: list[int] | None = None,
) -> None:
"""
Args:
features: Number of features for inputs to the layer.
mlp_multiplier: Model uses features*mlp_multiplier hidden units.
n_heads: Number of attention heads. Should be a factor of features.
(I.e. the layer uses features // n_heads.)
dropout: Dropout.
drop_path: DropPath.
n_blocks: Number of local-global transformer pairs.
"""
super().__init__()
self.features = features
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self.drop_path = drop_path
self.n_blocks = n_blocks
self._checkpoint = checkpoint or []
if not all(0 <= c < 2 * n_blocks + 1 for c in self._checkpoint):
raise ValueError(
"Checkpoints should be 0 <= i < 2*n_blocks+1. "
f"{self._checkpoint=}."
)
self.transformers = nn.ModuleList(
[
Transformer(
features=features,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=drop_path,
)
for _ in range(2 * n_blocks + 1)
]
)
self.evaluator = [
self._checkpoint_wrapper
if i in self._checkpoint
else lambda m, x: m(x)
for i, _ in enumerate(self.transformers)
]
self.shifter = shifter or _Shift()
@staticmethod
def _checkpoint_wrapper(
model: nn.Module, data: tuple[Tensor, Tensor | None]
) -> Tensor:
return checkpoint(model, data, use_reentrant=False)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor of shape::
[batch, global_sequence, local_sequence, features]
Returns:
Tensor: Tensor of shape::
[batch, global_sequence, local_sequence, features]
"""
if x.shape[-1] != self.features:
raise ValueError(
f"Expecting tensor with last dimension size {self.features}."
)
if x.ndim != 4:
raise ValueError(
f"Expecting tensor with exactly four dimensions. {x.shape=}."
)
self.shifter.reset()
local: bool = True
attn_mask = {True: None, False: None}
transformer_iter = zip(self.evaluator, self.transformers, strict=False)
# First local block
evaluator, transformer = next(transformer_iter)
x = evaluator(transformer, (x, attn_mask[local]))
for evaluator, transformer in transformer_iter:
local = not local
# We are making exactly 2*n_blocks transposes.
# So the output has the same shape as input.
x = x.transpose(1, 2)
x = evaluator(transformer, (x, attn_mask[local]))
if not local:
x, attn_mask = self.shifter(x)
return x
class PatchEmbed(nn.Module):
"""
Patch embedding via 2D convolution.
"""
def __init__(
self, patch_size: int | tuple[int, ...], channels: int, embed_dim: int
):
super().__init__()
self.patch_size = patch_size
self.channels = channels
self.embed_dim = embed_dim
self.proj = nn.Conv2d(
channels,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=True,
)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor of shape [batch, channels, lat, lon].
Returns:
Tensor: Tensor with shape
[batch, embed_dim, lat//patch_size, lon//patch_size]
"""
H, W = x.shape[-2:]
if W % self.patch_size[1] != 0:
raise ValueError(
f"Cannot do patch embedding for tensor of shape {x.size()}"
" with patch size {self.patch_size}. (Dimensions are BSCHW.)"
)
if H % self.patch_size[0] != 0:
raise ValueError(
f"Cannot do patch embedding for tensor of shape {x.size()}"
f" with patch size {self.patch_size}. (Dimensions are BSCHW.)"
)
x = self.proj(x)
return x
class PrithviWxCEncoderDecoder(nn.Module):
"""
Hiera-MaxViT encoder/decoder code.
"""
def __init__(
self,
embed_dim: int,
n_blocks: int,
mlp_multiplier: float,
n_heads: int,
dropout: float,
drop_path: float,
shifter: nn.Module | None = None,
transformer_cp: list[int] | None = None,
) -> None:
"""
Args:
embed_dim: Embedding dimension
n_blocks: Number of local-global transformer pairs.
mlp_multiplier: MLP multiplier for hidden features in feed forward
networks.
n_heads: Number of attention heads.
dropout: Dropout.
drop_path: DropPath.
"""
super().__init__()
self.embed_dim = embed_dim
self.n_blocks = n_blocks
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self._transformer_cp = transformer_cp
self.lgl_block = LocalGlobalLocalBlock(
features=embed_dim,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=drop_path,
n_blocks=n_blocks,
shifter=shifter,
checkpoint=transformer_cp,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: Tensor of shape
[batch, global sequence, local sequence, embed_dim]
Returns:
Tensor of shape
[batch, mask_unit_sequence, local_sequence, embed_dim].
Identical in shape to the input x.
"""
x = self.lgl_block(x)
return x
class PrithviWxC(nn.Module):
"""Encoder-decoder fusing Hiera with MaxViT. See
- Ryali et al. "Hiera: A Hierarchical Vision Transformer without the
Bells-and-Whistles" (https://arxiv.org/abs/2306.00989)
- Tu et al. "MaxViT: Multi-Axis Vision Transformer"
(https://arxiv.org/abs/2204.01697)
"""
def __init__(
self,
in_channels: int,
input_size_time: int,
in_channels_static: int,
input_scalers_mu: Tensor,
input_scalers_sigma: Tensor,
input_scalers_epsilon: float,
static_input_scalers_mu: Tensor,
static_input_scalers_sigma: Tensor,
static_input_scalers_epsilon: float,
output_scalers: Tensor,
n_lats_px: int,
n_lons_px: int,
patch_size_px: tuple[int],
mask_unit_size_px: tuple[int],
mask_ratio_inputs: float,
embed_dim: int,
n_blocks_encoder: int,
n_blocks_decoder: int,
mlp_multiplier: float,
n_heads: int,
dropout: float,
drop_path: float,
parameter_dropout: float,
residual: str,
masking_mode: str,
positional_encoding: str,
decoder_shifting: bool = False,
checkpoint_encoder: list[int] | None = None,
checkpoint_decoder: list[int] | None = None,
) -> None:
"""
Args:
in_channels: Number of input channels.
input_size_time: Number of timestamps in input.
in_channels_static: Number of input channels for static data.
input_scalers_mu: Tensor of size (in_channels,). Used to rescale
input.
input_scalers_sigma: Tensor of size (in_channels,). Used to rescale
input.
input_scalers_epsilon: Float. Used to rescale input.
static_input_scalers_mu: Tensor of size (in_channels_static). Used
to rescale static inputs.
static_input_scalers_sigma: Tensor of size (in_channels_static).
Used to rescale static inputs.
static_input_scalers_epsilon: Float. Used to rescale static inputs.
output_scalers: Tensor of shape (in_channels,). Used to rescale
output.
n_lats_px: Total latitudes in data. In pixels.
n_lons_px: Total longitudes in data. In pixels.
patch_size_px: Patch size for tokenization. In pixels lat/lon.
mask_unit_size_px: Size of each mask unit. In pixels lat/lon.
mask_ratio_inputs: Masking ratio for inputs. 0 to 1.
embed_dim: Embedding dimension
n_blocks_encoder: Number of local-global transformer pairs in
encoder.
n_blocks_decoder: Number of local-global transformer pairs in
decoder.
mlp_multiplier: MLP multiplier for hidden features in feed forward
networks.
n_heads: Number of attention heads.
dropout: Dropout.
drop_path: DropPath.
parameter_dropout: Dropout applied to parameters.
residual: Indicates whether and how model should work as residual
model. Accepted values are 'climate', 'temporal' and 'none'
positional_encoding: possible values are
['absolute' (default), 'fourier'].
'absolute' lat lon encoded in 3 dimensions using sine and
cosine
'fourier' lat/lon to be encoded using various frequencies
masking_mode: String ['local', 'global', 'both'] that controls the
type of masking used.
checkpoint_encoder: List of integers controlling if gradient
checkpointing is used on encoder.
Format: [] for no gradient checkpointing. [3, 7] for
checkpointing after 4th and 8th layer etc.
checkpoint_decoder: List of integers controlling if gradient
checkpointing is used on decoder.
Format: See `checkpoint_encoder`.
masking_mode: The type of masking to use
{'global', 'local', 'both'}
decoder_shifting: Whether to use swin shifting in the decoder.
"""
super().__init__()
self.in_channels = in_channels
self.input_size_time = input_size_time
self.in_channels_static = in_channels_static
self.n_lats_px = n_lats_px
self.n_lons_px = n_lons_px
self.patch_size_px = patch_size_px
self.mask_unit_size_px = mask_unit_size_px
self.mask_ratio_inputs = mask_ratio_inputs
self.embed_dim = embed_dim
self.n_blocks_encoder = n_blocks_encoder
self.n_blocks_decoder = n_blocks_decoder
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self.drop_path = drop_path
self.residual = residual
self._decoder_shift = decoder_shifting
self.positional_encoding = positional_encoding
self._checkpoint_encoder = checkpoint_encoder
self._checkpoint_decoder = checkpoint_decoder
assert self.n_lats_px % self.mask_unit_size_px[0] == 0
assert self.n_lons_px % self.mask_unit_size_px[1] == 0
assert self.mask_unit_size_px[0] % self.patch_size_px[0] == 0
assert self.mask_unit_size_px[1] % self.patch_size_px[1] == 0
if self.patch_size_px[0] != self.patch_size_px[1]:
raise NotImplementedError(
"Current pixel shuffle symmetric patches."
)
self.local_shape_mu = (
self.mask_unit_size_px[0] // self.patch_size_px[0],
self.mask_unit_size_px[1] // self.patch_size_px[1],
)
self.global_shape_mu = (
self.n_lats_px // self.mask_unit_size_px[0],
self.n_lons_px // self.mask_unit_size_px[1],
)
assert input_scalers_mu.shape == (in_channels,)
assert input_scalers_sigma.shape == (in_channels,)
assert output_scalers.shape == (in_channels,)
if self.positional_encoding != "fourier":
assert static_input_scalers_mu.shape == (in_channels_static,)
assert static_input_scalers_sigma.shape == (in_channels_static,)
# Input shape [batch, time, parameter, lat, lon]
self.input_scalers_epsilon = input_scalers_epsilon
self.register_buffer(
"input_scalers_mu", input_scalers_mu.reshape(1, 1, -1, 1, 1)
)
self.register_buffer(
"input_scalers_sigma", input_scalers_sigma.reshape(1, 1, -1, 1, 1)
)
# Static inputs shape [batch, parameter, lat, lon]
self.static_input_scalers_epsilon = static_input_scalers_epsilon
self.register_buffer(
"static_input_scalers_mu",
static_input_scalers_mu.reshape(1, -1, 1, 1),
)
self.register_buffer(
"static_input_scalers_sigma",
static_input_scalers_sigma.reshape(1, -1, 1, 1),
)
# Output shape [batch, parameter, lat, lon]
self.register_buffer(
"output_scalers", output_scalers.reshape(1, -1, 1, 1)
)
self.parameter_dropout = nn.Dropout2d(p=parameter_dropout)
self.patch_embedding = PatchEmbed(
patch_size=patch_size_px,
channels=in_channels * input_size_time,
embed_dim=embed_dim,
)
if self.residual == "climate":
self.patch_embedding_static = PatchEmbed(
patch_size=patch_size_px,
channels=in_channels + in_channels_static,
embed_dim=embed_dim,
)
else:
self.patch_embedding_static = PatchEmbed(
patch_size=patch_size_px,
channels=in_channels_static,
embed_dim=embed_dim,
)
self.input_time_embedding = nn.Linear(1, embed_dim // 4, bias=True)
self.lead_time_embedding = nn.Linear(1, embed_dim // 4, bias=True)
self.mask_token = nn.Parameter(torch.randn(1, 1, 1, self.embed_dim))
self._nglobal_mu = np.prod(self.global_shape_mu)
self._global_idx = torch.arange(self._nglobal_mu)
self._nlocal_mu = np.prod(self.local_shape_mu)
self._local_idx = torch.arange(self._nlocal_mu)
self.encoder = PrithviWxCEncoderDecoder(
embed_dim=embed_dim,
n_blocks=n_blocks_encoder,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=drop_path,
transformer_cp=checkpoint_encoder,
)
if n_blocks_decoder != 0:
if self._decoder_shift:
self.decoder_shifter = d_shifter = SWINShift(
self.mask_unit_size_px,
self.global_shape_mu,
self.local_shape_mu,
self.patch_size_px,
n_context_tokens=0,
)
else:
self.decoder_shifter = d_shifter = None
self.decoder = PrithviWxCEncoderDecoder(
embed_dim=embed_dim,
n_blocks=n_blocks_decoder,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=0.0,
shifter=d_shifter,
transformer_cp=checkpoint_decoder,
)
self.unembed = nn.Linear(
self.embed_dim,
self.in_channels
* self.patch_size_px[0]
* self.patch_size_px[1],
bias=True,
)
self.masking_mode = masking_mode.lower()
match self.masking_mode:
case "local":
self.generate_mask = self._gen_mask_local
case "global":
self.generate_mask = self._gen_mask_global
case "both":
self._mask_both_local: bool = True
self.generate_mask = self._gen_mask_both
case _:
raise ValueError(
f"Masking mode '{masking_mode}' not supported"
)
def swap_masking(self) -> None:
self._mask_both_local = not self._mask_both_local
@cached_property
def n_masked_global(self):
return int(self.mask_ratio_inputs * np.prod(self.global_shape_mu))
@cached_property
def n_masked_local(self):
return int(self.mask_ratio_inputs * np.prod(self.local_shape_mu))
@staticmethod
def _shuffle_along_axis(a, axis):
idx = torch.argsort(input=torch.rand(*a.shape), dim=axis)
return torch.gather(a, dim=axis, index=idx)
def _gen_mask_local(self, sizes: tuple[int]) -> tuple[Tensor]:
"""
Args:
batch_size: Number of elements in batch
Returns:
Tuple of torch tensors. [indices masked, indices unmasked].
Each of these is a tensor of shape (batch, global sequene)
"""
# Identify which indices (values) should be masked
maskable_indices = self._local_idx.view(1, -1).expand(*sizes[:2], -1)
maskable_indices = self._shuffle_along_axis(maskable_indices, 2)
indices_masked = maskable_indices[:, :, : self.n_masked_local]
indices_unmasked = maskable_indices[:, :, self.n_masked_local :]
return indices_masked, indices_unmasked
def _gen_mask_global(self, sizes: tuple[int]) -> tuple[Tensor]:
"""
Args:
batch_size: Number of elements in batch
Returns:
Tuple of torch tensors. [indices masked, indices unmasked].
Each of these is a tensor of shape (batch, global sequene)
"""
# Identify which indices (values) should be masked
maskable_indices = self._global_idx.view(1, -1).expand(*sizes[:1], -1)
maskable_indices = self._shuffle_along_axis(maskable_indices, 1)
indices_masked = maskable_indices[:, : self.n_masked_global]
indices_unmasked = maskable_indices[:, self.n_masked_global :]
return indices_masked, indices_unmasked
def _gen_mask_both(self, sizes: tuple[int]) -> tuple[Tensor]:
if self._mask_both_local:
return self._gen_mask_local(sizes)
else:
return self._gen_mask_global(sizes)
@staticmethod
def reconstruct_batch(
idx_masked: Tensor,
idx_unmasked: Tensor,
data_masked: Tensor,
data_unmasked: Tensor,
) -> Tensor:
"""Reconstructs a tensor along the mask unit dimension. Batched
version.
Args:
idx_masked: Tensor of shape `batch, mask unit sequence`.
idx_unmasked: Tensor of shape `batch, mask unit sequence`.
data_masked: Tensor of shape `batch, mask unit sequence, ...`.
Should have same size along mask unit sequence dimension as
idx_masked. Dimensions beyond the first two, marked here as ...
will typically be `local_sequence, channel` or
`channel, lat, lon`. These dimensions should agree with
data_unmasked.
data_unmasked: Tensor of shape `batch, mask unit sequence, ...`.
Should have same size along mask unit sequence dimension as
idx_unmasked. Dimensions beyond the first two, marked here as
... will typically be `local_sequence, channel` or `channel,
lat, lon`. These dimensions should agree with data_masked.
Returns:
Tensor: Tensor of same shape as inputs data_masked and
data_unmasked. I.e. `batch, mask unit sequence, ...`. Index for
the total data composed of the masked and the unmasked part.
"""
dim: int = idx_masked.ndim
idx_total = torch.argsort(
torch.cat([idx_masked, idx_unmasked], dim=-1), dim=-1
)
idx_total = idx_total.view(
*idx_total.shape, *[1] * (data_unmasked.ndim - dim)
)
idx_total = idx_total.expand(
*idx_total.shape[:dim], *data_unmasked.shape[dim:]
)
data = torch.cat([data_masked, data_unmasked], dim=dim - 1)
data = torch.gather(data, dim=dim - 1, index=idx_total)
return data, idx_total
def fourier_pos_encoding(self, x_static: Tensor) -> Tensor:
"""
Args
x_static: B x C x H x W. first two channels are lat, and lon
Returns
Tensor: Tensor of shape B x E x H x W where E is the embedding
dimension.
"""
# B x C x H x W -> B x 1 x H/P x W/P
latitudes_patch = F.avg_pool2d(
x_static[:, [0]],
kernel_size=self.patch_size_px,
stride=self.patch_size_px,
)
longitudes_patch = F.avg_pool2d(
x_static[:, [1]],
kernel_size=self.patch_size_px,
stride=self.patch_size_px,
)
modes = (
torch.arange(self.embed_dim // 4, device=x_static.device).view(
1, -1, 1, 1
)
+ 1.0
)
pos_encoding = torch.cat(
(
torch.sin(latitudes_patch * modes),
torch.sin(longitudes_patch * modes),
torch.cos(latitudes_patch * modes),
torch.cos(longitudes_patch * modes),
),
axis=1,
)
return pos_encoding # B x E x H/P x W/P
def time_encoding(self, input_time, lead_time):
"""
Args:
input_time: Tensor of shape [batch].
lead_time: Tensor of shape [batch].
Returns:
Tensor: Tensor of shape [batch, embed_dim, 1, 1]
"""
input_time = self.input_time_embedding(input_time.view(-1, 1, 1, 1))
lead_time = self.lead_time_embedding(lead_time.view(-1, 1, 1, 1))
time_encoding = torch.cat(
(
torch.cos(input_time),
torch.cos(lead_time),
torch.sin(input_time),
torch.sin(lead_time),
),
axis=3,
)
return time_encoding
def to_patching(self, x: Tensor) -> Tensor:
"""Transform data from lat/lon space to two axis patching
Args: ->
x: Tesnor in lat/lon space (N, C, Nlat//P_0, Nlon//P_1)
Returns:
Tensor in patch space (N, G, L, C)
"""
n_batch = x.shape[0]
x = x.view(
n_batch,
-1,
self.global_shape_mu[0],
self.local_shape_mu[0],
self.global_shape_mu[1],
self.local_shape_mu[1],
)
x = x.permute(0, 2, 4, 3, 5, 1).contiguous()
s = x.shape
return x.view(n_batch, s[1] * s[2], s[3] * s[4], -1)
def from_patching(self, x: Tensor) -> Tensor:
"""Transform data from two axis patching to lat/lon space
Args:
x: Tensor in patch space with shape (N, G, L, C*P_0*P_1)
Returns:
Tensor: Tensor in lat/lon space
(N, C*P_0*P_1, Nlat//P_0, Nlon // P_1)
"""
n_batch = x.shape[0]
x = x.view(
n_batch,
self.global_shape_mu[0],
self.global_shape_mu[1],
self.local_shape_mu[0],
self.local_shape_mu[1],
-1,
)
x = x.permute(0, 5, 1, 3, 2, 4).contiguous()
s = x.shape
return x.view(n_batch, -1, s[2] * s[3], s[4] * s[5])
def forward(self, batch: dict[str, torch.Tensor]) -> torch.Tensor:
"""
Args:
batch: Dictionary the following keys::
'x': Tensor of shape [batch, time, parameter, lat, lon]
'y': Tensor of shape [batch, parameter, lat, lon]
'static': Tensor of shape [batch, channel_static, lat, lon]
'climate': Optional tensor of shape [batch, parameter, lat, lon]
'input_time': Tensor of shape [batch]. Or none.
'lead_time': Tensor of shape [batch]. Or none.
Returns:
Tensor: Tensor of shape [batch, parameter, lat, lon].
""" # noqa: E501
x_rescaled = (batch["x"] - self.input_scalers_mu) / (
self.input_scalers_sigma + self.input_scalers_epsilon
)
batch_size = x_rescaled.shape[0]
if self.positional_encoding == "fourier":
x_static_pos = self.fourier_pos_encoding(batch["static"])
x_static = (
batch["static"][:, 2:] - self.static_input_scalers_mu[:, 3:]
) / (
self.static_input_scalers_sigma[:, 3:]
+ self.static_input_scalers_epsilon
)
else:
x_static = (batch["static"] - self.static_input_scalers_mu) / (
self.static_input_scalers_sigma
+ self.static_input_scalers_epsilon
)
if self.residual == "temporal":
# We create a residual of same shape as y
index = torch.where(
batch["lead_time"] > 0, batch["x"].shape[1] - 1, 0
)
index = index.view(-1, 1, 1, 1, 1)
index = index.expand(batch_size, 1, *batch["x"].shape[2:])
x_hat = torch.gather(batch["x"], dim=1, index=index)
x_hat = x_hat.squeeze(1)
elif self.residual == "climate":
climate_scaled = (
batch["climate"] - self.input_scalers_mu.view(1, -1, 1, 1)
) / (
self.input_scalers_sigma.view(1, -1, 1, 1)
+ self.input_scalers_epsilon
)
# [batch, time, parameter, lat, lon]
# -> [batch, time x parameter, lat, lon]
x_rescaled = x_rescaled.flatten(1, 2)
# Parameter dropout
x_rescaled = self.parameter_dropout(x_rescaled)
x_embedded = self.patch_embedding(x_rescaled)
if self.residual == "climate":
static_embedded = self.patch_embedding_static(
torch.cat((x_static, climate_scaled), dim=1)
)
else:
static_embedded = self.patch_embedding_static(x_static)
if self.positional_encoding == "fourier":
static_embedded += x_static_pos
x_embedded = self.to_patching(x_embedded)
static_embedded = self.to_patching(static_embedded)
time_encoding = self.time_encoding(
batch["input_time"], batch["lead_time"]
)
tokens = x_embedded + static_embedded + time_encoding
# Now we generate masks based on masking_mode
indices_masked, indices_unmasked = self.generate_mask(
(batch_size, self._nglobal_mu)
)
indices_masked = indices_masked.to(device=tokens.device)
indices_unmasked = indices_unmasked.to(device=tokens.device)
maskdim: int = indices_masked.ndim
# Unmasking
unmask_view = (*indices_unmasked.shape, *[1] * (tokens.ndim - maskdim))
unmasked = torch.gather(
tokens,
dim=maskdim - 1,
index=indices_unmasked.view(*unmask_view).expand(
*indices_unmasked.shape, *tokens.shape[maskdim:]
),
)
# Encoder
x_encoded = self.encoder(unmasked)
# Generate and position encode the mask tokens
# [1, 1, 1, embed_dim]
# -> [batch, global_seq_masked, local seq, embed_dim]
mask_view = (*indices_masked.shape, *[1] * (tokens.ndim - maskdim))
masking = self.mask_token.repeat(*static_embedded.shape[:3], 1)
masked = masking + static_embedded
masked = torch.gather(
masked,
dim=maskdim - 1,
index=indices_masked.view(*mask_view).expand(
*indices_masked.shape, *tokens.shape[maskdim:]
),
)
recon, _ = self.reconstruct_batch(
indices_masked, indices_unmasked, masked, x_encoded
)
x_decoded = self.decoder(recon)
# Output: [batch, global sequence, local sequence,
# in_channels * patch_size[0] * patch_size[1]]
x_unembed = self.unembed(x_decoded)
# Reshape to [batch, global_lat, global_lon, local_lat, local_lon,
# in_channels * patch_size[0] * patch_size[1]]
x_out = self.from_patching(x_unembed)
# Pixel shuffle to [batch, in_channels, lat, lon]
x_out = F.pixel_shuffle(x_out, self.patch_size_px[0])
if self.residual == "temporal":
x_out = self.output_scalers * x_out + x_hat
elif self.residual == "climate":
x_out = self.output_scalers * x_out + batch["climate"]
elif self.residual == "none":
x_out = (
self.output_scalers * x_out
+ self.input_scalers_mu.reshape(1, -1, 1, 1)
)
return x_out
|