Spaces:
Sleeping
Sleeping
roll back
Browse files- app.py +10 -1
- aurora_utils.py +68 -3
app.py
CHANGED
@@ -56,7 +56,7 @@ with header_col2:
|
|
56 |
st.markdown("### Select a Model")
|
57 |
selected_model = st.selectbox(
|
58 |
"",
|
59 |
-
options=["Pangu-Weather", "FengWu", "Aurora", "Climax", "Prithvi", "LSTM"],
|
60 |
index=0,
|
61 |
key="model_selector",
|
62 |
help="Select the model you want to use."
|
@@ -74,6 +74,15 @@ with left_col:
|
|
74 |
if selected_model == "Prithvi":
|
75 |
(config, uploaded_surface_files, uploaded_vertical_files,
|
76 |
clim_surf_path, clim_vert_path, config_path, weights_path) = prithvi_config_ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
elif selected_model == "Aurora":
|
78 |
uploaded_files = aurora_config_ui()
|
79 |
elif selected_model == "Pangu-Weather":
|
|
|
56 |
st.markdown("### Select a Model")
|
57 |
selected_model = st.selectbox(
|
58 |
"",
|
59 |
+
options=["Pangu-Weather", "FengWu", "Aurora", "Climax", "Prithvi", "GEOS-Specific-LSTM", "GEOS-Finetuned-Climax"],
|
60 |
index=0,
|
61 |
key="model_selector",
|
62 |
help="Select the model you want to use."
|
|
|
74 |
if selected_model == "Prithvi":
|
75 |
(config, uploaded_surface_files, uploaded_vertical_files,
|
76 |
clim_surf_path, clim_vert_path, config_path, weights_path) = prithvi_config_ui()
|
77 |
+
elif selected_model == "Climax":
|
78 |
+
st.info("Climax model is not yet available.")
|
79 |
+
st.stop()
|
80 |
+
elif selected_model == "GEOS-Specific-LSTM":
|
81 |
+
st.info("GEOS-Specific-LSTM model is not yet available.")
|
82 |
+
st.stop()
|
83 |
+
elif selected_model == "GEOS-Finetuned-Climax":
|
84 |
+
st.info("GEOS-Finetuned-Climax model is not yet available.")
|
85 |
+
st.stop()
|
86 |
elif selected_model == "Aurora":
|
87 |
uploaded_files = aurora_config_ui()
|
88 |
elif selected_model == "Pangu-Weather":
|
aurora_utils.py
CHANGED
@@ -5,14 +5,79 @@ import numpy as np
|
|
5 |
from datetime import datetime
|
6 |
|
7 |
def aurora_config_ui():
|
8 |
-
st.subheader("Aurora Model Data
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
uploaded_files = st.file_uploader(
|
11 |
-
"
|
12 |
accept_multiple_files=True,
|
13 |
key="aurora_uploader",
|
14 |
type=["nc", "netcdf", "nc4"]
|
15 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
return uploaded_files
|
17 |
|
18 |
def prepare_aurora_batch(ds):
|
|
|
5 |
from datetime import datetime
|
6 |
|
7 |
def aurora_config_ui():
|
8 |
+
st.subheader("Aurora Model Data Input")
|
9 |
+
|
10 |
+
# Detailed data description section
|
11 |
+
st.markdown("""
|
12 |
+
**Available Models & Usage:**
|
13 |
+
|
14 |
+
Aurora provides several pretrained and fine-tuned models at 0.25° and 0.1° resolutions.
|
15 |
+
Models and weights are available through the HuggingFace repository: [microsoft/aurora](https://huggingface.co/microsoft/aurora).
|
16 |
+
|
17 |
+
**Aurora 0.25° Pretrained**
|
18 |
+
- Trained on a variety of data.
|
19 |
+
- Suitable if no fine-tuned version exists for your dataset or to fine-tune Aurora yourself.
|
20 |
+
- Use if your dataset is ERA5 at 0.25° resolution (721x1440).
|
21 |
+
|
22 |
+
**Aurora 0.25° Pretrained Small**
|
23 |
+
- A smaller version of the pretrained model for debugging purposes.
|
24 |
+
|
25 |
+
**Aurora 0.25° Fine-Tuned**
|
26 |
+
- Fine-tuned on IFS HRES T0.
|
27 |
+
- Best performance at 0.25° but should only be used for IFS HRES T0 data.
|
28 |
+
- May not give optimal results for other datasets.
|
29 |
+
|
30 |
+
**Aurora 0.1° Fine-Tuned**
|
31 |
+
- For IFS HRES T0 at 0.1° resolution (1801x3600).
|
32 |
+
- Best performing at 0.1° resolution.
|
33 |
+
- Data must match IFS HRES T0 conditions.
|
34 |
+
|
35 |
+
**Required Variables & Pressure Levels:**
|
36 |
+
|
37 |
+
For all Aurora models at these resolutions, the following inputs are required:
|
38 |
+
|
39 |
+
- **Surface-level variables:** 2t, 10u, 10v, msl
|
40 |
+
- **Static variables:** lsm, slt, z
|
41 |
+
- **Atmospheric variables:** t, u, v, q, z
|
42 |
+
- **Pressure levels (hPa):** 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000
|
43 |
+
|
44 |
+
Latitude range should decrease from 90°N to -90°S, and longitude range from 0° to 360° (excluding 360°). Data should be in single precision float32.
|
45 |
+
|
46 |
+
|
47 |
+
**Data Format (Batch):**
|
48 |
+
Data should be provided as a `aurora.Batch` object:
|
49 |
+
- `surf_vars` dict with shape (b, t, h, w)
|
50 |
+
- `static_vars` dict with shape (h, w)
|
51 |
+
- `atmos_vars` dict with shape (b, t, c, h, w)
|
52 |
+
- `metadata` containing lat, lon, time, and atmos_levels.
|
53 |
+
|
54 |
+
For detailed instructions and examples, refer to the official Aurora documentation and code repository.
|
55 |
+
""")
|
56 |
+
|
57 |
+
# File uploader for Aurora data
|
58 |
+
st.markdown("### Upload Your Input Data Files for Aurora")
|
59 |
+
st.markdown("Upload the NetCDF files (e.g., `.nc`, `.netcdf`, `.nc4`) containing the required variables.")
|
60 |
uploaded_files = st.file_uploader(
|
61 |
+
"Drag and drop or select multiple .nc files",
|
62 |
accept_multiple_files=True,
|
63 |
key="aurora_uploader",
|
64 |
type=["nc", "netcdf", "nc4"]
|
65 |
)
|
66 |
+
|
67 |
+
st.markdown("---")
|
68 |
+
st.markdown("### References & Resources")
|
69 |
+
st.markdown("""
|
70 |
+
- **HuggingFace Repository:** [microsoft/aurora](https://huggingface.co/microsoft/aurora)
|
71 |
+
- **Model Usage Examples:**
|
72 |
+
```python
|
73 |
+
from aurora import Aurora
|
74 |
+
|
75 |
+
model = Aurora()
|
76 |
+
model.load_checkpoint("microsoft/aurora", "aurora-0.25-pretrained.ckpt")
|
77 |
+
```
|
78 |
+
- **API & Documentation:** Refer to the Aurora official GitHub and HuggingFace pages for detailed instructions.
|
79 |
+
""")
|
80 |
+
|
81 |
return uploaded_files
|
82 |
|
83 |
def prepare_aurora_batch(ds):
|