File size: 8,479 Bytes
8a18a38
 
 
 
 
 
3db5513
8a18a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db5513
8a18a38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# import streamlit as st

# x = st.slider('Select a value')
# st.write(x, 'squared is', x * x)


import streamlit as st
import random
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
from huggingface_hub import hf_hub_download, snapshot_download
import tarfile
import os
import sys
import yaml

st.title("PrithviWxC Model Inference")

st.write("Setting up environment...")

# Set up torch backends and seeds
torch.jit.enable_onednn_fusion(True)
if torch.cuda.is_available():
    st.write(f"Using device: {torch.cuda.get_device_name()}")
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = True

random.seed(42)
if torch.cuda.is_available():
    torch.cuda.manual_seed(42)
torch.manual_seed(42)
np.random.seed(42)

# Set device
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

st.write(f"Using device: {device}")

# Download and extract PrithviWxC module
st.write("Downloading and setting up PrithviWxC module...")

module_tar_path = hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename="PrithviWxC.tar.gz",
    local_dir=".",
    force_download=True
)

with tarfile.open(module_tar_path, "r:gz") as tar:
    tar.extractall(path=".")

# Add the module path to sys.path
sys.path.append(os.path.abspath("./PrithviWxC"))

st.write("PrithviWxC module imported successfully.")

# Now import the module
from PrithviWxC.dataloaders.merra2 import Merra2Dataset, input_scalers, output_scalers, static_input_scalers, preproc
from PrithviWxC.model import PrithviWxC

# Variables and times
surface_vars = [
    "EFLUX",
    "GWETROOT",
    "HFLUX",
    "LAI",
    "LWGAB",
    "LWGEM",
    "LWTUP",
    "PS",
    "QV2M",
    "SLP",
    "SWGNT",
    "SWTNT",
    "T2M",
    "TQI",
    "TQL",
    "TQV",
    "TS",
    "U10M",
    "V10M",
    "Z0M",
]
static_surface_vars = ["FRACI", "FRLAND", "FROCEAN", "PHIS"]
vertical_vars = ["CLOUD", "H", "OMEGA", "PL", "QI", "QL", "QV", "T", "U", "V"]
levels = [
    34.0,
    39.0,
    41.0,
    43.0,
    44.0,
    45.0,
    48.0,
    51.0,
    53.0,
    56.0,
    63.0,
    68.0,
    71.0,
    72.0,
]
padding = {"level": [0, 0], "lat": [0, -1], "lon": [0, 0]}

st.write("Setting up dataset parameters...")

# User inputs for lead times and input times
lead_time = st.number_input("Lead Time (hours)", min_value=1, max_value=24, value=6)
input_time = st.number_input("Input Time Difference (hours)", min_value=-24, max_value=0, value=-6)

lead_times = [lead_time]  # This variable can be changed to change the task
input_times = [input_time]  # This variable can be changed to change the task

# Data file
time_range = ("2020-01-01T00:00:00", "2020-01-01T23:59:59")

st.write("Downloading data files...")

surf_dir = Path("./merra-2")
snapshot_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    allow_patterns="merra-2/MERRA2_sfc_2020010[1].nc",
    local_dir=".",
    force_download=True,
)

vert_dir = Path("./merra-2")
snapshot_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    allow_patterns="merra-2/MERRA_pres_2020010[1].nc",
    local_dir=".",
    force_download=True,
)

# Climatology
surf_clim_dir = Path("./climatology")
snapshot_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    allow_patterns="climatology/climate_surface_doy00[1]*.nc",
    local_dir=".",
    force_download=True,
)

vert_clim_dir = Path("./climatology")
snapshot_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    allow_patterns="climatology/climate_vertical_doy00[1]*.nc",
    local_dir=".",
    force_download=True,
)

st.write("Setting positional encoding...")

positional_encoding = "fourier"

st.write("Initializing dataset...")

dataset = Merra2Dataset(
    time_range=time_range,
    lead_times=lead_times,
    input_times=input_times,
    data_path_surface=surf_dir,
    data_path_vertical=vert_dir,
    climatology_path_surface=surf_clim_dir,
    climatology_path_vertical=vert_clim_dir,
    surface_vars=surface_vars,
    static_surface_vars=static_surface_vars,
    vertical_vars=vertical_vars,
    levels=levels,
    positional_encoding=positional_encoding,
)

assert len(dataset) > 0, "There doesn't seem to be any valid data."

st.write("Loading scalers...")

surf_in_scal_path = Path("./climatology/musigma_surface.nc")
hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename=f"climatology/{surf_in_scal_path.name}",
    local_dir=".",
    force_download=True,
)

vert_in_scal_path = Path("./climatology/musigma_vertical.nc")
hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename=f"climatology/{vert_in_scal_path.name}",
    local_dir=".",
    force_download=True,
)

surf_out_scal_path = Path("./climatology/anomaly_variance_surface.nc")
hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename=f"climatology/{surf_out_scal_path.name}",
    local_dir=".",
    force_download=True,
)

vert_out_scal_path = Path("./climatology/anomaly_variance_vertical.nc")
hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename=f"climatology/{vert_out_scal_path.name}",
    local_dir=".",
    force_download=True,
)

in_mu, in_sig = input_scalers(
    surface_vars,
    vertical_vars,
    levels,
    surf_in_scal_path,
    vert_in_scal_path,
)

output_sig = output_scalers(
    surface_vars,
    vertical_vars,
    levels,
    surf_out_scal_path,
    vert_out_scal_path,
)

static_mu, static_sig = static_input_scalers(
    surf_in_scal_path,
    static_surface_vars,
)

st.write("Setting up model...")

residual = "climate"
masking_mode = "local"
decoder_shifting = True
masking_ratio = 0.99

# Load model config
hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename="config.yaml",
    local_dir=".",
    force_download=True,
)

with open("./config.yaml", "r") as f:
    config = yaml.safe_load(f)

model = PrithviWxC(
    in_channels=config["params"]["in_channels"],
    input_size_time=config["params"]["input_size_time"],
    in_channels_static=config["params"]["in_channels_static"],
    input_scalers_mu=in_mu,
    input_scalers_sigma=in_sig,
    input_scalers_epsilon=config["params"]["input_scalers_epsilon"],
    static_input_scalers_mu=static_mu,
    static_input_scalers_sigma=static_sig,
    static_input_scalers_epsilon=config["params"]["static_input_scalers_epsilon"],
    output_scalers=output_sig**0.5,
    n_lats_px=config["params"]["n_lats_px"],
    n_lons_px=config["params"]["n_lons_px"],
    patch_size_px=config["params"]["patch_size_px"],
    mask_unit_size_px=config["params"]["mask_unit_size_px"],
    mask_ratio_inputs=masking_ratio,
    embed_dim=config["params"]["embed_dim"],
    n_blocks_encoder=config["params"]["n_blocks_encoder"],
    n_blocks_decoder=config["params"]["n_blocks_decoder"],
    mlp_multiplier=config["params"]["mlp_multiplier"],
    n_heads=config["params"]["n_heads"],
    dropout=config["params"]["dropout"],
    drop_path=config["params"]["drop_path"],
    parameter_dropout=config["params"]["parameter_dropout"],
    residual=residual,
    masking_mode=masking_mode,
    decoder_shifting=decoder_shifting,
    positional_encoding=positional_encoding,
    checkpoint_encoder=[],
    checkpoint_decoder=[],
)

st.write("Loading model weights...")

weights_path = Path("./weights/prithvi.wxc.2300m.v1.pt")
hf_hub_download(
    repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
    filename=weights_path.name,
    local_dir="./weights",
    force_download=True,
)

state_dict = torch.load(weights_path, map_location=device)
if "model_state" in state_dict:
    state_dict = state_dict["model_state"]
model.load_state_dict(state_dict, strict=True)

model = model.to(device)

st.write("Model loaded and ready.")

if st.button("Run Inference"):
    st.write("Running inference...")

    data = next(iter(dataset))
    batch = preproc([data], padding)

    for k, v in batch.items():
        if isinstance(v, torch.Tensor):
            batch[k] = v.to(device)

    with torch.no_grad():
        model.eval()
        out = model(batch)

    st.write("Inference completed. Generating plot...")

    t2m = out[0, 12].cpu().numpy()

    lat = np.linspace(-90, 90, out.shape[-2])
    lon = np.linspace(-180, 180, out.shape[-1])
    X, Y = np.meshgrid(lon, lat)

    fig, ax = plt.subplots()
    cs = ax.contourf(X, Y, t2m, 100)
    ax.set_aspect("equal")
    plt.colorbar(cs)
    st.pyplot(fig)

    st.write("Plot generated.")