Spaces:
Build error
Build error
Upload 6 files
Browse files- PrithviWxC/__init__.py +10 -0
- PrithviWxC/dataloaders/__init__.py +0 -0
- PrithviWxC/dataloaders/merra2.py +1168 -0
- PrithviWxC/dataloaders/merra2_rollout.py +512 -0
- PrithviWxC/model.py +1321 -0
- PrithviWxC/rollout.py +49 -0
PrithviWxC/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Prithvi-WxC - Weather and climate foundational model."""
|
2 |
+
|
3 |
+
__version__ = "1.0.0"
|
4 |
+
|
5 |
+
from . import dataloaders, model
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"dataloaders",
|
9 |
+
"model",
|
10 |
+
]
|
PrithviWxC/dataloaders/__init__.py
ADDED
File without changes
|
PrithviWxC/dataloaders/merra2.py
ADDED
@@ -0,0 +1,1168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools as ft
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
from collections import defaultdict
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import h5py
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import torch
|
13 |
+
from torch import Tensor
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
|
16 |
+
|
17 |
+
def preproc(batch: list[dict], padding: dict[tuple[int]]) -> dict[str, Tensor]:
|
18 |
+
"""Prepressing function for MERRA2 Dataset
|
19 |
+
|
20 |
+
Args:
|
21 |
+
batch (dict): List of training samples, each sample should be a
|
22 |
+
dictionary with the following keys::
|
23 |
+
|
24 |
+
'sur_static': Numpy array of shape (3, lat, lon). For each pixel (lat, lon), the first dimension indexes sin(lat), cos(lon), sin(lon).
|
25 |
+
'sur_vals': Torch tensor of shape (parameter, time, lat, lon).
|
26 |
+
'sur_tars': Torch tensor of shape (parameter, time, lat, lon).
|
27 |
+
'ulv_vals': Torch tensor of shape (parameter, level, time, lat, lon).
|
28 |
+
'ulv_tars': Torch tensor of shape (parameter, level, time, lat, lon).
|
29 |
+
'sur_climate': Torch tensor of shape (parameter, lat, lon)
|
30 |
+
'ulv_climate': Torch tensor of shape (parameter, level, lat, lon)
|
31 |
+
'lead_time': Integer.
|
32 |
+
'input_time': Integer.
|
33 |
+
|
34 |
+
padding: Dictionary with keys 'level', 'lat', 'lon', each of dim 2.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
Dictionary with the following keys::
|
38 |
+
|
39 |
+
'x': [batch, time, parameter, lat, lon]
|
40 |
+
'y': [batch, parameter, lat, lon]
|
41 |
+
'static': [batch, parameter, lat, lon]
|
42 |
+
'lead_time': [batch]
|
43 |
+
'input_time': [batch]
|
44 |
+
'climate (Optional)': [batch, parameter, lat, lon]
|
45 |
+
|
46 |
+
Note:
|
47 |
+
Here, for x and y, 'parameter' is [surface parameter, upper level,
|
48 |
+
parameter x level]. Similarly for the static information we have
|
49 |
+
[sin(lat), cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod),
|
50 |
+
...].
|
51 |
+
""" # noqa: E501
|
52 |
+
b0 = batch[0]
|
53 |
+
nbatch = len(batch)
|
54 |
+
data_keys = set(b0.keys())
|
55 |
+
|
56 |
+
essential_keys = {
|
57 |
+
"sur_static",
|
58 |
+
"sur_vals",
|
59 |
+
"sur_tars",
|
60 |
+
"ulv_vals",
|
61 |
+
"ulv_tars",
|
62 |
+
"input_time",
|
63 |
+
"lead_time",
|
64 |
+
}
|
65 |
+
|
66 |
+
climate_keys = {
|
67 |
+
"sur_climate",
|
68 |
+
"ulv_climate",
|
69 |
+
}
|
70 |
+
|
71 |
+
all_keys = essential_keys | climate_keys
|
72 |
+
|
73 |
+
if not essential_keys.issubset(data_keys):
|
74 |
+
raise ValueError("Missing essential keys.")
|
75 |
+
|
76 |
+
if not data_keys.issubset(all_keys):
|
77 |
+
raise ValueError("Unexpected keys in batch.")
|
78 |
+
|
79 |
+
# Bring all tensors from the batch into a single tensor
|
80 |
+
upl_x = torch.empty((nbatch, *b0["ulv_vals"].shape))
|
81 |
+
upl_y = torch.empty((nbatch, *b0["ulv_tars"].shape))
|
82 |
+
|
83 |
+
sur_x = torch.empty((nbatch, *b0["sur_vals"].shape))
|
84 |
+
sur_y = torch.empty((nbatch, *b0["sur_tars"].shape))
|
85 |
+
|
86 |
+
sur_sta = torch.empty((nbatch, *b0["sur_static"].shape))
|
87 |
+
|
88 |
+
lead_time = torch.empty((nbatch,), dtype=torch.float32)
|
89 |
+
input_time = torch.empty((nbatch,), dtype=torch.float32)
|
90 |
+
|
91 |
+
for i, rec in enumerate(batch):
|
92 |
+
sur_x[i] = rec["sur_vals"]
|
93 |
+
sur_y[i] = rec["sur_tars"]
|
94 |
+
|
95 |
+
upl_x[i] = rec["ulv_vals"]
|
96 |
+
upl_y[i] = rec["ulv_tars"]
|
97 |
+
|
98 |
+
sur_sta[i] = rec["sur_static"]
|
99 |
+
|
100 |
+
lead_time[i] = rec["lead_time"]
|
101 |
+
input_time[i] = rec["input_time"]
|
102 |
+
|
103 |
+
return_value = {
|
104 |
+
"lead_time": lead_time,
|
105 |
+
"input_time": input_time,
|
106 |
+
}
|
107 |
+
|
108 |
+
# Reshape (batch, parameter, level, time, lat, lon) ->
|
109 |
+
# (batch, time, parameter, level, lat, lon)
|
110 |
+
upl_x = upl_x.permute((0, 3, 1, 2, 4, 5))
|
111 |
+
upl_y = upl_y.permute((0, 3, 1, 2, 4, 5))
|
112 |
+
# Reshape (batch, parameter, time, lat, lon) ->
|
113 |
+
# (batch, time, parameter, lat, lon)
|
114 |
+
sur_x = sur_x.permute((0, 2, 1, 3, 4))
|
115 |
+
sur_y = sur_y.permute((0, 2, 1, 3, 4))
|
116 |
+
|
117 |
+
# Pad
|
118 |
+
padding_2d = (*padding["lon"], *padding["lat"])
|
119 |
+
|
120 |
+
def pad2d(x):
|
121 |
+
return torch.nn.functional.pad(x, padding_2d, mode="constant", value=0)
|
122 |
+
|
123 |
+
padding_3d = (*padding["lon"], *padding["lat"], *padding["level"])
|
124 |
+
|
125 |
+
def pad3d(x):
|
126 |
+
return torch.nn.functional.pad(x, padding_3d, mode="constant", value=0)
|
127 |
+
|
128 |
+
sur_x = pad2d(sur_x).contiguous()
|
129 |
+
upl_x = pad3d(upl_x).contiguous()
|
130 |
+
sur_y = pad2d(sur_y).contiguous()
|
131 |
+
upl_y = pad3d(upl_y).contiguous()
|
132 |
+
return_value["static"] = pad2d(sur_sta).contiguous()
|
133 |
+
|
134 |
+
# Remove time for targets
|
135 |
+
upl_y = torch.squeeze(upl_y, 1)
|
136 |
+
sur_y = torch.squeeze(sur_y, 1)
|
137 |
+
|
138 |
+
# We stack along the combined parameter x level dimension
|
139 |
+
return_value["x"] = torch.cat(
|
140 |
+
(sur_x, upl_x.view(*upl_x.shape[:2], -1, *upl_x.shape[4:])), dim=2
|
141 |
+
)
|
142 |
+
return_value["y"] = torch.cat(
|
143 |
+
(sur_y, upl_y.view(upl_y.shape[0], -1, *upl_y.shape[3:])), dim=1
|
144 |
+
)
|
145 |
+
|
146 |
+
if climate_keys.issubset(data_keys):
|
147 |
+
sur_climate = torch.empty((nbatch, *b0["sur_climate"].shape))
|
148 |
+
ulv_climate = torch.empty((nbatch, *b0["ulv_climate"].shape))
|
149 |
+
for i, rec in enumerate(batch):
|
150 |
+
sur_climate[i] = rec["sur_climate"]
|
151 |
+
ulv_climate[i] = rec["ulv_climate"]
|
152 |
+
sur_climate = pad2d(sur_climate)
|
153 |
+
ulv_climate = pad3d(ulv_climate)
|
154 |
+
|
155 |
+
return_value["climate"] = torch.cat(
|
156 |
+
(
|
157 |
+
sur_climate,
|
158 |
+
ulv_climate.view(nbatch, -1, *ulv_climate.shape[3:]),
|
159 |
+
),
|
160 |
+
dim=1,
|
161 |
+
)
|
162 |
+
|
163 |
+
return return_value
|
164 |
+
|
165 |
+
|
166 |
+
def input_scalers(
|
167 |
+
surf_vars: list[str],
|
168 |
+
vert_vars: list[str],
|
169 |
+
levels: list[float],
|
170 |
+
surf_path: str | Path,
|
171 |
+
vert_path: str | Path,
|
172 |
+
) -> tuple[Tensor, Tensor]:
|
173 |
+
"""Reads the input scalers
|
174 |
+
|
175 |
+
Args:
|
176 |
+
surf_vars: surface variables to be used.
|
177 |
+
vert_vars: vertical variables to be used.
|
178 |
+
levels: MERRA2 levels to use.
|
179 |
+
surf_path: path to surface scalers file.
|
180 |
+
vert_path: path to vertical level scalers file.
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
mu (Tensor): mean values
|
184 |
+
var (Tensor): varience values
|
185 |
+
"""
|
186 |
+
with h5py.File(Path(surf_path), "r", libver="latest") as surf_file:
|
187 |
+
stats = [x.decode().lower() for x in surf_file["statistic"][()]]
|
188 |
+
mu_idx = stats.index("mu")
|
189 |
+
sig_idx = stats.index("sigma")
|
190 |
+
|
191 |
+
s_mu = torch.tensor([surf_file[k][()][mu_idx] for k in surf_vars])
|
192 |
+
s_sig = torch.tensor([surf_file[k][()][sig_idx] for k in surf_vars])
|
193 |
+
|
194 |
+
with h5py.File(Path(vert_path), "r", libver="latest") as vert_file:
|
195 |
+
stats = [x.decode().lower() for x in vert_file["statistic"][()]]
|
196 |
+
mu_idx = stats.index("mu")
|
197 |
+
sig_idx = stats.index("sigma")
|
198 |
+
|
199 |
+
lvl = vert_file["lev"][()]
|
200 |
+
l_idx = [np.where(lvl == v)[0].item() for v in levels]
|
201 |
+
|
202 |
+
v_mu = np.array([vert_file[k][()][mu_idx, l_idx] for k in vert_vars])
|
203 |
+
v_sig = np.array([vert_file[k][()][sig_idx, l_idx] for k in vert_vars])
|
204 |
+
|
205 |
+
v_mu = torch.from_numpy(v_mu).view(-1)
|
206 |
+
v_sig = torch.from_numpy(v_sig).view(-1)
|
207 |
+
|
208 |
+
mu = torch.cat((s_mu, v_mu), dim=0).to(torch.float32)
|
209 |
+
sig = torch.cat((s_sig, v_sig), dim=0).to(torch.float32).clamp(1e-4, 1e4)
|
210 |
+
return mu, sig
|
211 |
+
|
212 |
+
|
213 |
+
def static_input_scalers(
|
214 |
+
scalar_path: str | Path, stat_vars: list[str], unscaled_params: int = 7
|
215 |
+
) -> tuple[Tensor, Tensor]:
|
216 |
+
scalar_path = Path(scalar_path)
|
217 |
+
|
218 |
+
with h5py.File(scalar_path, "r", libver="latest") as scaler_file:
|
219 |
+
stats = [x.decode().lower() for x in scaler_file["statistic"][()]]
|
220 |
+
mu_idx = stats.index("mu")
|
221 |
+
sig_idx = stats.index("sigma")
|
222 |
+
|
223 |
+
mu = torch.tensor([scaler_file[k][()][mu_idx] for k in stat_vars])
|
224 |
+
sig = torch.tensor([scaler_file[k][()][sig_idx] for k in stat_vars])
|
225 |
+
|
226 |
+
z = torch.zeros(unscaled_params, dtype=mu.dtype, device=mu.device)
|
227 |
+
o = torch.ones(unscaled_params, dtype=sig.dtype, device=sig.device)
|
228 |
+
mu = torch.cat((z, mu), dim=0).to(torch.float32)
|
229 |
+
sig = torch.cat((o, sig), dim=0).to(torch.float32)
|
230 |
+
|
231 |
+
return mu, sig.clamp(1e-4, 1e4)
|
232 |
+
|
233 |
+
|
234 |
+
def output_scalers(
|
235 |
+
surf_vars: list[str],
|
236 |
+
vert_vars: list[str],
|
237 |
+
levels: list[float],
|
238 |
+
surf_path: str | Path,
|
239 |
+
vert_path: str | Path,
|
240 |
+
) -> Tensor:
|
241 |
+
surf_path = Path(surf_path)
|
242 |
+
vert_path = Path(vert_path)
|
243 |
+
|
244 |
+
with h5py.File(surf_path, "r", libver="latest") as surf_file:
|
245 |
+
svars = torch.tensor([surf_file[k][()] for k in surf_vars])
|
246 |
+
|
247 |
+
with h5py.File(vert_path, "r", libver="latest") as vert_file:
|
248 |
+
lvl = vert_file["lev"][()]
|
249 |
+
l_idx = [np.where(lvl == v)[0].item() for v in levels]
|
250 |
+
vvars = np.array([vert_file[k][()][l_idx] for k in vert_vars])
|
251 |
+
vvars = torch.from_numpy(vvars).view(-1)
|
252 |
+
|
253 |
+
var = torch.cat((svars, vvars), dim=0).to(torch.float32).clamp(1e-7, 1e7)
|
254 |
+
|
255 |
+
return var
|
256 |
+
|
257 |
+
|
258 |
+
class SampleSpec:
|
259 |
+
"""
|
260 |
+
A data class to collect the information used to define a sample.
|
261 |
+
"""
|
262 |
+
|
263 |
+
def __init__(
|
264 |
+
self,
|
265 |
+
inputs: tuple[pd.Timestamp, pd.Timestamp],
|
266 |
+
lead_time: int,
|
267 |
+
target: pd.Timestamp | list[pd.Timestamp],
|
268 |
+
):
|
269 |
+
"""
|
270 |
+
Args:
|
271 |
+
inputs: Tuple of timestamps. In ascending order.
|
272 |
+
lead_time: Lead time. In hours.
|
273 |
+
target: Timestamp of the target. Can be before or after the inputs.
|
274 |
+
"""
|
275 |
+
if not inputs[0] < inputs[1]:
|
276 |
+
raise ValueError(
|
277 |
+
"Timestamps in `inputs` should be in strictly ascending order."
|
278 |
+
)
|
279 |
+
|
280 |
+
self.inputs = inputs
|
281 |
+
self.input_time = (inputs[1] - inputs[0]).total_seconds() / 3600
|
282 |
+
self.lead_time = lead_time
|
283 |
+
self.target = target
|
284 |
+
|
285 |
+
self.times = [*inputs, target]
|
286 |
+
self.stat_times = [inputs[-1]]
|
287 |
+
|
288 |
+
@property
|
289 |
+
def climatology_info(self) -> tuple[int, int]:
|
290 |
+
"""Get the required climatology info.
|
291 |
+
|
292 |
+
:return: information required to obtain climatology data. Essentially
|
293 |
+
this is the day of the year and hour of the day of the target
|
294 |
+
timestamp, with the former restricted to the interval [1, 365].
|
295 |
+
:rtype: tuple
|
296 |
+
"""
|
297 |
+
return (min(self.target.dayofyear, 365), self.target.hour)
|
298 |
+
|
299 |
+
@property
|
300 |
+
def year(self) -> int:
|
301 |
+
return self.inputs[1].year
|
302 |
+
|
303 |
+
@property
|
304 |
+
def dayofyear(self) -> int:
|
305 |
+
return self.inputs[1].dayofyear
|
306 |
+
|
307 |
+
@property
|
308 |
+
def hourofday(self) -> int:
|
309 |
+
return self.inputs[1].hour
|
310 |
+
|
311 |
+
def _info_str(self) -> str:
|
312 |
+
iso_8601 = "%Y-%m-%dT%H:%M:%S"
|
313 |
+
|
314 |
+
return (
|
315 |
+
f"Issue time: {self.inputs[1].strftime(iso_8601)}\n"
|
316 |
+
f"Lead time: {self.lead_time} hours ahead\n"
|
317 |
+
f"Input delta: {self.input_time} hours\n"
|
318 |
+
f"Target time: {self.target.strftime(iso_8601)}"
|
319 |
+
)
|
320 |
+
|
321 |
+
@classmethod
|
322 |
+
def get(cls, timestamp: pd.Timestamp, dt: int, lead_time: int):
|
323 |
+
"""Given a timestamp and lead time, generates a SampleSpec object
|
324 |
+
describing the sample further.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
timestamp: Timstamp of the sample, Ie this is the larger of the two
|
328 |
+
input timstamps.
|
329 |
+
dt: Time between input samples, in hours.
|
330 |
+
lead_time: Lead time. In hours.
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
SampleSpec
|
334 |
+
""" # noqa: E501
|
335 |
+
assert dt > 0, "dt should be possitive"
|
336 |
+
lt = pd.to_timedelta(lead_time, unit="h")
|
337 |
+
dt = pd.to_timedelta(dt, unit="h")
|
338 |
+
|
339 |
+
if lead_time >= 0:
|
340 |
+
timestamp_target = timestamp + lt
|
341 |
+
else:
|
342 |
+
timestamp_target = timestamp - dt + lt
|
343 |
+
|
344 |
+
spec = cls(
|
345 |
+
inputs=(timestamp - dt, timestamp),
|
346 |
+
lead_time=lead_time,
|
347 |
+
target=timestamp_target,
|
348 |
+
)
|
349 |
+
|
350 |
+
return spec
|
351 |
+
|
352 |
+
def __repr__(self) -> str:
|
353 |
+
return self._info_str()
|
354 |
+
|
355 |
+
def __str__(self) -> str:
|
356 |
+
return self._info_str()
|
357 |
+
|
358 |
+
|
359 |
+
class Merra2Dataset(Dataset):
|
360 |
+
"""MERRA2 dataset. The dataset unifies surface and vertical data as well as
|
361 |
+
optional climatology.
|
362 |
+
|
363 |
+
Samples come in the form of a dictionary. Not all keys support all
|
364 |
+
variables, yet the general ordering of dimensions is
|
365 |
+
parameter, level, time, lat, lon
|
366 |
+
|
367 |
+
Note:
|
368 |
+
Data is assumed to be in NetCDF files containing daily data at 3-hourly
|
369 |
+
intervals. These follow the naming patterns
|
370 |
+
MERRA2_sfc_YYYYMMHH.nc and MERRA_pres_YYYYMMHH.nc and can be located in
|
371 |
+
two different locations. Optional climatology data comes from files
|
372 |
+
climate_surface_doyDOY_hourHOD.nc and
|
373 |
+
climate_vertical_doyDOY_hourHOD.nc.
|
374 |
+
|
375 |
+
|
376 |
+
Note:
|
377 |
+
`_get_valid_timestamps` assembles a set of all timestamps for which
|
378 |
+
there is data (with hourly resolutions). The result is stored in
|
379 |
+
`_valid_timestamps`. `_get_valid_climate_timestamps` does the same with
|
380 |
+
climatology data and stores it in `_valid_climate_timestamps`.
|
381 |
+
|
382 |
+
Based on this information, `samples` generates a list of valid samples,
|
383 |
+
stored in `samples`. Here the format is::
|
384 |
+
|
385 |
+
[
|
386 |
+
[
|
387 |
+
(timestamp 1, lead time A),
|
388 |
+
(timestamp 1, lead time B),
|
389 |
+
(timestamp 1, lead time C),
|
390 |
+
],
|
391 |
+
[
|
392 |
+
(timestamp 2, lead time D),
|
393 |
+
(timestamp 2, lead time E),
|
394 |
+
]
|
395 |
+
]
|
396 |
+
|
397 |
+
That is, the outer list iterates over timestamps (init times), the
|
398 |
+
inner over lead times. Only valid entries are stored.
|
399 |
+
"""
|
400 |
+
|
401 |
+
valid_vertical_vars = [
|
402 |
+
"CLOUD",
|
403 |
+
"H",
|
404 |
+
"OMEGA",
|
405 |
+
"PL",
|
406 |
+
"QI",
|
407 |
+
"QL",
|
408 |
+
"QV",
|
409 |
+
"T",
|
410 |
+
"U",
|
411 |
+
"V",
|
412 |
+
]
|
413 |
+
valid_surface_vars = [
|
414 |
+
"EFLUX",
|
415 |
+
"GWETROOT",
|
416 |
+
"HFLUX",
|
417 |
+
"LAI",
|
418 |
+
"LWGAB",
|
419 |
+
"LWGEM",
|
420 |
+
"LWTUP",
|
421 |
+
"PRECTOT",
|
422 |
+
"PS",
|
423 |
+
"QV2M",
|
424 |
+
"SLP",
|
425 |
+
"SWGNT",
|
426 |
+
"SWTNT",
|
427 |
+
"T2M",
|
428 |
+
"TQI",
|
429 |
+
"TQL",
|
430 |
+
"TQV",
|
431 |
+
"TS",
|
432 |
+
"U10M",
|
433 |
+
"V10M",
|
434 |
+
"Z0M",
|
435 |
+
]
|
436 |
+
valid_static_surface_vars = ["FRACI", "FRLAND", "FROCEAN", "PHIS"]
|
437 |
+
|
438 |
+
valid_levels = [
|
439 |
+
34.0,
|
440 |
+
39.0,
|
441 |
+
41.0,
|
442 |
+
43.0,
|
443 |
+
44.0,
|
444 |
+
45.0,
|
445 |
+
48.0,
|
446 |
+
51.0,
|
447 |
+
53.0,
|
448 |
+
56.0,
|
449 |
+
63.0,
|
450 |
+
68.0,
|
451 |
+
71.0,
|
452 |
+
72.0,
|
453 |
+
]
|
454 |
+
|
455 |
+
timedelta_input = pd.to_timedelta(3, unit="h")
|
456 |
+
|
457 |
+
def __init__(
|
458 |
+
self,
|
459 |
+
time_range: tuple[str | pd.Timestamp, str | pd.Timestamp],
|
460 |
+
lead_times: list[int],
|
461 |
+
input_times: list[int],
|
462 |
+
data_path_surface: str | Path,
|
463 |
+
data_path_vertical: str | Path,
|
464 |
+
climatology_path_surface: str | Path | None = None,
|
465 |
+
climatology_path_vertical: str | Path | None = None,
|
466 |
+
surface_vars: list[str] | None = None,
|
467 |
+
static_surface_vars: list[str] | None = None,
|
468 |
+
vertical_vars: list[str] | None = None,
|
469 |
+
levels: list[float] | None = None,
|
470 |
+
roll_longitudes: int = 0,
|
471 |
+
positional_encoding: str = "absolute",
|
472 |
+
rtype: type = np.float32,
|
473 |
+
dtype: torch.dtype = torch.float32,
|
474 |
+
) -> None:
|
475 |
+
"""
|
476 |
+
Args:
|
477 |
+
data_path_surface: Location of surface data.
|
478 |
+
data_path_vertical: Location of vertical data.
|
479 |
+
climatology_path_surface: Location of (optional) surface
|
480 |
+
climatology.
|
481 |
+
climatology_path_vertical: Location of (optional) vertical
|
482 |
+
climatology.
|
483 |
+
surface_vars: Surface variables.
|
484 |
+
static_surface_vars: Static surface variables.
|
485 |
+
vertical_vars: Vertical variables.
|
486 |
+
levels: Levels.
|
487 |
+
time_range: Used to subset data.
|
488 |
+
lead_times: Lead times for generalized forecasting.
|
489 |
+
roll_longitudes: Set to non-zero value to data by random amount
|
490 |
+
along longitude dimension.
|
491 |
+
position_encoding: possible values are
|
492 |
+
['absolute' (default), 'fourier'].
|
493 |
+
'absolute' returns lat lon encoded in 3 dimensions using sine
|
494 |
+
and cosine
|
495 |
+
'fourier' returns lat/lon to be encoded by model
|
496 |
+
<any other key> returns lat/lon to be encoded by model
|
497 |
+
rtype: numpy data type used during read
|
498 |
+
dtype: torch data type of data output
|
499 |
+
"""
|
500 |
+
|
501 |
+
self.time_range = (
|
502 |
+
pd.to_datetime(time_range[0]),
|
503 |
+
pd.to_datetime(time_range[1]),
|
504 |
+
)
|
505 |
+
self.lead_times = lead_times
|
506 |
+
self.input_times = input_times
|
507 |
+
self._roll_longitudes = list(range(roll_longitudes + 1))
|
508 |
+
|
509 |
+
self._uvars = vertical_vars or self.valid_vertical_vars
|
510 |
+
self._level = levels or self.valid_levels
|
511 |
+
self._svars = surface_vars or self.valid_surface_vars
|
512 |
+
self._sstat = static_surface_vars or self.valid_static_surface_vars
|
513 |
+
self._nuvars = len(self._uvars)
|
514 |
+
self._nlevel = len(self._level)
|
515 |
+
self._nsvars = len(self._svars)
|
516 |
+
self._nsstat = len(self._sstat)
|
517 |
+
|
518 |
+
self.rtype = rtype
|
519 |
+
self.dtype = dtype
|
520 |
+
|
521 |
+
self.positional_encoding = positional_encoding
|
522 |
+
|
523 |
+
self._data_path_surface = Path(data_path_surface)
|
524 |
+
self._data_path_vertical = Path(data_path_vertical)
|
525 |
+
|
526 |
+
self.dir_exists(self._data_path_surface)
|
527 |
+
self.dir_exists(self._data_path_vertical)
|
528 |
+
|
529 |
+
self._get_coordinates()
|
530 |
+
|
531 |
+
self._climatology_path_surface = Path(climatology_path_surface) or None
|
532 |
+
self._climatology_path_vertical = (
|
533 |
+
Path(climatology_path_vertical) or None
|
534 |
+
)
|
535 |
+
self._require_clim = (
|
536 |
+
self._climatology_path_surface is not None
|
537 |
+
and self._climatology_path_vertical is not None
|
538 |
+
)
|
539 |
+
|
540 |
+
if self._require_clim:
|
541 |
+
self.dir_exists(self._climatology_path_surface)
|
542 |
+
self.dir_exists(self._climatology_path_vertical)
|
543 |
+
elif (
|
544 |
+
climatology_path_surface is None
|
545 |
+
and climatology_path_vertical is None
|
546 |
+
):
|
547 |
+
self._climatology_path_surface = None
|
548 |
+
self._climatology_path_vertical = None
|
549 |
+
else:
|
550 |
+
raise ValueError(
|
551 |
+
"Either both or neither of"
|
552 |
+
"`climatology_path_surface` and"
|
553 |
+
"`climatology_path_vertical` should be None."
|
554 |
+
)
|
555 |
+
|
556 |
+
if not set(self._svars).issubset(set(self.valid_surface_vars)):
|
557 |
+
raise ValueError("Invalid surface variable.")
|
558 |
+
|
559 |
+
if not set(self._sstat).issubset(set(self.valid_static_surface_vars)):
|
560 |
+
raise ValueError("Invalid static surface variable.")
|
561 |
+
|
562 |
+
if not set(self._uvars).issubset(set(self.valid_vertical_vars)):
|
563 |
+
raise ValueError("Inalid vertical variable.")
|
564 |
+
|
565 |
+
if not set(self._level).issubset(set(self.valid_levels)):
|
566 |
+
raise ValueError("Invalid level.")
|
567 |
+
|
568 |
+
@staticmethod
|
569 |
+
def dir_exists(path: Path) -> None:
|
570 |
+
if not path.is_dir():
|
571 |
+
raise ValueError(f"Directory {path} does not exist.")
|
572 |
+
|
573 |
+
@property
|
574 |
+
def upper_shape(self) -> tuple:
|
575 |
+
"""Returns the vertical variables shape
|
576 |
+
Returns:
|
577 |
+
tuple: vertical variable shape in the following order::
|
578 |
+
|
579 |
+
[VAR, LEV, TIME, LAT, LON]
|
580 |
+
"""
|
581 |
+
return self._nuvars, self._nlevel, 2, 361, 576
|
582 |
+
|
583 |
+
@property
|
584 |
+
def surface_shape(self) -> tuple:
|
585 |
+
"""Returns the surface variables shape
|
586 |
+
|
587 |
+
Returns:
|
588 |
+
tuple: surafce shape in the following order::
|
589 |
+
|
590 |
+
[VAR, LEV, TIME, LAT, LON]
|
591 |
+
"""
|
592 |
+
return self._nsvars, 2, 361, 576
|
593 |
+
|
594 |
+
def data_file_surface(self, timestamp: pd.Timestamp) -> Path:
|
595 |
+
"""Build the surfcae data file name based on timestamp
|
596 |
+
|
597 |
+
Args:
|
598 |
+
timestamp: a timestamp
|
599 |
+
|
600 |
+
Returns:
|
601 |
+
Path: constructed path
|
602 |
+
"""
|
603 |
+
pattern = "MERRA2_sfc_%Y%m%d.nc"
|
604 |
+
data_file = self._data_path_surface / timestamp.strftime(pattern)
|
605 |
+
return data_file
|
606 |
+
|
607 |
+
def data_file_vertical(self, timestamp: pd.Timestamp) -> Path:
|
608 |
+
"""Build the vertical data file name based on timestamp
|
609 |
+
|
610 |
+
Args:
|
611 |
+
timestamp: a timestamp
|
612 |
+
|
613 |
+
Returns:
|
614 |
+
Path: constructed path
|
615 |
+
"""
|
616 |
+
pattern = "MERRA_pres_%Y%m%d.nc"
|
617 |
+
data_file = self._data_path_vertical / timestamp.strftime(pattern)
|
618 |
+
return data_file
|
619 |
+
|
620 |
+
def data_file_surface_climate(
|
621 |
+
self,
|
622 |
+
timestamp: pd.Timestamp | None = None,
|
623 |
+
dayofyear: int | None = None,
|
624 |
+
hourofday: int | None = None,
|
625 |
+
) -> Path:
|
626 |
+
"""
|
627 |
+
Returns the path to a climatology file based either on a timestamp or
|
628 |
+
the dayofyear / hourofday combination.
|
629 |
+
Args:
|
630 |
+
timestamp: A timestamp.
|
631 |
+
dayofyear: Day of the year. 1 to 366.
|
632 |
+
hourofday: Hour of the day. 0 to 23.
|
633 |
+
Returns:
|
634 |
+
Path: Path to climatology file.
|
635 |
+
"""
|
636 |
+
if timestamp is not None and (
|
637 |
+
(dayofyear is not None) or (hourofday is not None)
|
638 |
+
):
|
639 |
+
raise ValueError(
|
640 |
+
"Provide either timestamp or both dayofyear and hourofday."
|
641 |
+
)
|
642 |
+
|
643 |
+
if timestamp is not None:
|
644 |
+
dayofyear = min(timestamp.dayofyear, 365)
|
645 |
+
hourofday = timestamp.hour
|
646 |
+
|
647 |
+
file_name = f"climate_surface_doy{dayofyear:03}_hour{hourofday:02}.nc"
|
648 |
+
data_file = self._climatology_path_surface / file_name
|
649 |
+
return data_file
|
650 |
+
|
651 |
+
def data_file_vertical_climate(
|
652 |
+
self,
|
653 |
+
timestamp: pd.Timestamp | None = None,
|
654 |
+
dayofyear: int | None = None,
|
655 |
+
hourofday: int | None = None,
|
656 |
+
) -> Path:
|
657 |
+
"""Returns the path to a climatology file based either on a timestamp
|
658 |
+
or the dayofyear / hourofday combination.
|
659 |
+
|
660 |
+
Args:
|
661 |
+
timestamp: A timestamp. dayofyear: Day of the year. 1 to 366.
|
662 |
+
hourofday: Hour of the day. 0 to 23.
|
663 |
+
Returns:
|
664 |
+
Path: Path to climatology file.
|
665 |
+
"""
|
666 |
+
if timestamp is not None and (
|
667 |
+
(dayofyear is not None) or (hourofday is not None)
|
668 |
+
):
|
669 |
+
raise ValueError(
|
670 |
+
"Provide either timestamp or both dayofyear and hourofday."
|
671 |
+
)
|
672 |
+
|
673 |
+
if timestamp is not None:
|
674 |
+
dayofyear = min(timestamp.dayofyear, 365)
|
675 |
+
hourofday = timestamp.hour
|
676 |
+
|
677 |
+
file_name = f"climate_vertical_doy{dayofyear:03}_hour{hourofday:02}.nc"
|
678 |
+
data_file = self._climatology_path_vertical / file_name
|
679 |
+
return data_file
|
680 |
+
|
681 |
+
def _get_coordinates(self) -> None:
|
682 |
+
"""
|
683 |
+
Obtains the coordiantes (latitudes and longitudes) from a single data
|
684 |
+
file.
|
685 |
+
"""
|
686 |
+
timestamp = next(iter(self.valid_timestamps))
|
687 |
+
|
688 |
+
file = self.data_file_surface(timestamp)
|
689 |
+
with h5py.File(file, "r", libver="latest") as handle:
|
690 |
+
self.lats = lats = handle["lat"][()].astype(self.rtype)
|
691 |
+
self.lons = lons = handle["lon"][()].astype(self.rtype)
|
692 |
+
|
693 |
+
deg_to_rad = np.pi / 180
|
694 |
+
self._embed_lat = np.sin(lats * deg_to_rad).reshape(-1, 1)
|
695 |
+
|
696 |
+
self._embed_lon = np.empty((2, 1, len(lons)), dtype=self.rtype)
|
697 |
+
self._embed_lon[0, 0] = np.cos(lons * deg_to_rad)
|
698 |
+
self._embed_lon[1, 0] = np.sin(lons * deg_to_rad)
|
699 |
+
|
700 |
+
@ft.cached_property
|
701 |
+
def lats(self) -> np.ndarray:
|
702 |
+
timestamp = next(iter(self.valid_timestamps))
|
703 |
+
|
704 |
+
file = self.data_file_surface(timestamp)
|
705 |
+
with h5py.File(file, "r", libver="latest") as handle:
|
706 |
+
return handle["lat"][()].astype(self.rtype)
|
707 |
+
|
708 |
+
@ft.cached_property
|
709 |
+
def lons(self) -> np.ndarray:
|
710 |
+
timestamp = next(iter(self.valid_timestamps))
|
711 |
+
|
712 |
+
file = self.data_file_surface(timestamp)
|
713 |
+
with h5py.File(file, "r", libver="latest") as handle:
|
714 |
+
return handle["lon"][()].astype(self.rtype)
|
715 |
+
|
716 |
+
@ft.cached_property
|
717 |
+
def position_signal(self) -> np.ndarray:
|
718 |
+
"""Generates the "position signal" that is part of the static
|
719 |
+
features.
|
720 |
+
|
721 |
+
Returns:
|
722 |
+
Tensor: Torch tensor of dimension (parameter, lat, lon) containing
|
723 |
+
sin(lat), cos(lon), sin(lon).
|
724 |
+
"""
|
725 |
+
|
726 |
+
latitudes, longitudes = np.meshgrid(
|
727 |
+
self.lats, self.lons, indexing="ij"
|
728 |
+
)
|
729 |
+
|
730 |
+
if self.positional_encoding == "absolute":
|
731 |
+
latitudes = latitudes / 360 * 2.0 * np.pi
|
732 |
+
longitudes = longitudes / 360 * 2.0 * np.pi
|
733 |
+
sur_static = np.stack(
|
734 |
+
[np.sin(latitudes), np.cos(longitudes), np.sin(longitudes)],
|
735 |
+
axis=0,
|
736 |
+
)
|
737 |
+
else:
|
738 |
+
sur_static = np.stack([latitudes, longitudes], axis=0)
|
739 |
+
|
740 |
+
sur_static = sur_static.astype(self.rtype)
|
741 |
+
|
742 |
+
return sur_static
|
743 |
+
|
744 |
+
@ft.cached_property
|
745 |
+
def valid_timestamps(self) -> set[pd.Timestamp]:
|
746 |
+
"""Generates list of valid timestamps based on available files. Only
|
747 |
+
timestamps for which both surface and vertical information is available
|
748 |
+
are considered valid.
|
749 |
+
Returns:
|
750 |
+
list: list of timestamps
|
751 |
+
"""
|
752 |
+
|
753 |
+
s_glob = self._data_path_surface.glob("MERRA2_sfc_????????.nc")
|
754 |
+
s_files = [os.path.basename(f) for f in s_glob]
|
755 |
+
v_glob = self._data_path_surface.glob("MERRA_pres_????????.nc")
|
756 |
+
v_files = [os.path.basename(f) for f in v_glob]
|
757 |
+
|
758 |
+
s_re = re.compile(r"MERRA2_sfc_(\d{8}).nc\Z")
|
759 |
+
v_re = re.compile(r"MERRA_pres_(\d{8}).nc\Z")
|
760 |
+
fmt = "%Y%m%d"
|
761 |
+
|
762 |
+
s_times = {
|
763 |
+
(datetime.strptime(m[1], fmt))
|
764 |
+
for f in s_files
|
765 |
+
if (m := s_re.match(f))
|
766 |
+
}
|
767 |
+
v_times = {
|
768 |
+
(datetime.strptime(m[1], fmt))
|
769 |
+
for f in v_files
|
770 |
+
if (m := v_re.match(f))
|
771 |
+
}
|
772 |
+
|
773 |
+
times = s_times.intersection(v_times)
|
774 |
+
|
775 |
+
# Each file contains a day at 3 hour intervals
|
776 |
+
times = {
|
777 |
+
t + timedelta(hours=i) for i in range(0, 24, 3) for t in times
|
778 |
+
}
|
779 |
+
|
780 |
+
start_time, end_time = self.time_range
|
781 |
+
times = {pd.Timestamp(t) for t in times if start_time <= t <= end_time}
|
782 |
+
|
783 |
+
return times
|
784 |
+
|
785 |
+
@ft.cached_property
|
786 |
+
def valid_climate_timestamps(self) -> set[tuple[int, int]]:
|
787 |
+
"""Generates list of "timestamps" (dayofyear, hourofday) for which
|
788 |
+
climatology data is present. Only instances for which surface and
|
789 |
+
vertical data is available are considered valid.
|
790 |
+
Returns:
|
791 |
+
list: List of tuples describing valid climatology instances.
|
792 |
+
"""
|
793 |
+
if not self._require_clim:
|
794 |
+
return set()
|
795 |
+
|
796 |
+
s_glob = self._climatology_path_surface.glob(
|
797 |
+
"climate_surface_doy???_hour??.nc"
|
798 |
+
)
|
799 |
+
s_files = [os.path.basename(f) for f in s_glob]
|
800 |
+
|
801 |
+
v_glob = self._climatology_path_vertical.glob(
|
802 |
+
"climate_vertical_doy???_hour??.nc"
|
803 |
+
)
|
804 |
+
v_files = [os.path.basename(f) for f in v_glob]
|
805 |
+
|
806 |
+
s_re = re.compile(r"climate_surface_doy(\d{3})_hour(\d{2}).nc\Z")
|
807 |
+
v_re = re.compile(r"climate_vertical_doy(\d{3})_hour(\d{2}).nc\Z")
|
808 |
+
|
809 |
+
s_times = {
|
810 |
+
(int(m[1]), int(m[2])) for f in s_files if (m := s_re.match(f))
|
811 |
+
}
|
812 |
+
v_times = {
|
813 |
+
(int(m[1]), int(m[2])) for f in v_files if (m := v_re.match(f))
|
814 |
+
}
|
815 |
+
|
816 |
+
times = s_times.intersection(v_times)
|
817 |
+
|
818 |
+
return times
|
819 |
+
|
820 |
+
def _data_available(self, spec: SampleSpec) -> bool:
|
821 |
+
"""
|
822 |
+
Checks whether data is available for a given SampleSpec object. Does so
|
823 |
+
using the internal sets with available data previously constructed. Not
|
824 |
+
by checking the file system.
|
825 |
+
Args:
|
826 |
+
spec: SampleSpec object as returned by SampleSpec.get
|
827 |
+
Returns:
|
828 |
+
bool: if data is availability.
|
829 |
+
"""
|
830 |
+
valid = set(spec.times).issubset(self.valid_timestamps)
|
831 |
+
|
832 |
+
if self._require_clim:
|
833 |
+
sci = spec.climatology_info
|
834 |
+
ci = set(sci) if isinstance(sci, list) else set([sci]) # noqa: C405
|
835 |
+
valid &= ci.issubset(self.valid_climate_timestamps)
|
836 |
+
|
837 |
+
return valid
|
838 |
+
|
839 |
+
@ft.cached_property
|
840 |
+
def samples(self) -> list[tuple[pd.Timestamp, int, int]]:
|
841 |
+
"""
|
842 |
+
Generates list of all valid samlpes.
|
843 |
+
Returns:
|
844 |
+
list: List of tuples (timestamp, input time, lead time).
|
845 |
+
"""
|
846 |
+
valid_samples = []
|
847 |
+
dts = [(it, lt) for it in self.input_times for lt in self.lead_times]
|
848 |
+
|
849 |
+
for timestamp in sorted(self.valid_timestamps):
|
850 |
+
timestamp_samples = []
|
851 |
+
for it, lt in dts:
|
852 |
+
spec = SampleSpec.get(timestamp, -it, lt)
|
853 |
+
|
854 |
+
if self._data_available(spec):
|
855 |
+
timestamp_samples.append((timestamp, it, lt))
|
856 |
+
|
857 |
+
if timestamp_samples:
|
858 |
+
valid_samples.append(timestamp_samples)
|
859 |
+
|
860 |
+
return valid_samples
|
861 |
+
|
862 |
+
def _to_torch(
|
863 |
+
self,
|
864 |
+
data: dict[str, Tensor | list[Tensor]],
|
865 |
+
dtype: torch.dtype = torch.float32,
|
866 |
+
) -> dict[str, Tensor | list[Tensor]]:
|
867 |
+
out = {}
|
868 |
+
for k, v in data.items():
|
869 |
+
if isinstance(v, list):
|
870 |
+
out[k] = [torch.from_numpy(x).to(dtype) for x in v]
|
871 |
+
else:
|
872 |
+
out[k] = torch.from_numpy(v).to(dtype)
|
873 |
+
|
874 |
+
return out
|
875 |
+
|
876 |
+
def _lat_roll(
|
877 |
+
self, data: dict[str, Tensor | list[Tensor]], n: int
|
878 |
+
) -> dict[str, Tensor | list[Tensor]]:
|
879 |
+
out = {}
|
880 |
+
for k, v in data.items():
|
881 |
+
if isinstance(v, list):
|
882 |
+
out[k] = [torch.roll(x, shifts=n, dims=-1) for x in v]
|
883 |
+
else:
|
884 |
+
out[k] = torch.roll(v, shifts=n, dims=-1)
|
885 |
+
|
886 |
+
return out
|
887 |
+
|
888 |
+
def _read_static_data(
|
889 |
+
self, file: str | Path, doy: int, hod: int
|
890 |
+
) -> np.ndarray:
|
891 |
+
with h5py.File(file, "r", libver="latest") as handle:
|
892 |
+
lats_surf = handle["lat"]
|
893 |
+
lons_surf = handle["lon"]
|
894 |
+
|
895 |
+
nll = (len(lats_surf), len(lons_surf))
|
896 |
+
|
897 |
+
npos = len(self.position_signal)
|
898 |
+
ntime = 4
|
899 |
+
|
900 |
+
nstat = npos + ntime + self._nsstat
|
901 |
+
data = np.empty((nstat, *nll), dtype=self.rtype)
|
902 |
+
|
903 |
+
for i, key in enumerate(self._sstat, start=npos + ntime):
|
904 |
+
data[i] = handle[key][()].astype(dtype=self.rtype)
|
905 |
+
|
906 |
+
# [possition signal], cos(doy), sin(doy), cos(hod), sin(hod)
|
907 |
+
data[0:npos] = self.position_signal
|
908 |
+
data[npos + 0] = np.cos(2 * np.pi * doy / 366)
|
909 |
+
data[npos + 1] = np.sin(2 * np.pi * doy / 366)
|
910 |
+
data[npos + 2] = np.cos(2 * np.pi * hod / 24)
|
911 |
+
data[npos + 3] = np.sin(2 * np.pi * hod / 24)
|
912 |
+
|
913 |
+
return data
|
914 |
+
|
915 |
+
def _read_surface(
|
916 |
+
self, tidx: int, nll: tuple[int, int], handle: h5py.File
|
917 |
+
) -> np.ndarray:
|
918 |
+
data = np.empty((self._nsvars, *nll), dtype=self.rtype)
|
919 |
+
|
920 |
+
for i, key in enumerate(self._svars):
|
921 |
+
data[i] = handle[key][tidx][()].astype(dtype=self.rtype)
|
922 |
+
|
923 |
+
return data
|
924 |
+
|
925 |
+
def _read_levels(
|
926 |
+
self, tidx: int, nll: tuple[int, int], handle: h5py.File
|
927 |
+
) -> np.ndarray:
|
928 |
+
lvls = handle["lev"][()]
|
929 |
+
lidx = self._level_idxs(lvls)
|
930 |
+
|
931 |
+
data = np.empty((self._nuvars, self._nlevel, *nll), dtype=self.rtype)
|
932 |
+
|
933 |
+
for i, key in enumerate(self._uvars):
|
934 |
+
data[i] = handle[key][tidx, lidx][()].astype(dtype=self.rtype)
|
935 |
+
|
936 |
+
return np.ascontiguousarray(np.flip(data, axis=1))
|
937 |
+
|
938 |
+
def _level_idxs(self, lvls):
|
939 |
+
lidx = [np.argwhere(lvls == int(lvl)).item() for lvl in self._level]
|
940 |
+
return sorted(lidx)
|
941 |
+
|
942 |
+
@staticmethod
|
943 |
+
def _date_to_tidx(date: datetime | pd.Timestamp, handle: h5py.File) -> int:
|
944 |
+
if isinstance(date, pd.Timestamp):
|
945 |
+
date = date.to_pydatetime()
|
946 |
+
|
947 |
+
time = handle["time"]
|
948 |
+
|
949 |
+
t0 = time.attrs["begin_time"][()].item()
|
950 |
+
d0 = f"{time.attrs['begin_date'][()].item()}"
|
951 |
+
|
952 |
+
offset = datetime.strptime(d0, "%Y%m%d")
|
953 |
+
|
954 |
+
times = [offset + timedelta(minutes=int(t + t0)) for t in time[()]]
|
955 |
+
return times.index(date)
|
956 |
+
|
957 |
+
def _read_data(
|
958 |
+
self, file_pair: tuple[str, str], date: datetime
|
959 |
+
) -> dict[str, np.ndarray]:
|
960 |
+
s_file, v_file = file_pair
|
961 |
+
|
962 |
+
with h5py.File(s_file, "r", libver="latest") as shandle:
|
963 |
+
lats_surf = shandle["lat"]
|
964 |
+
lons_surf = shandle["lon"]
|
965 |
+
|
966 |
+
nll = (len(lats_surf), len(lons_surf))
|
967 |
+
|
968 |
+
tidx = self._date_to_tidx(date, shandle)
|
969 |
+
|
970 |
+
sdata = self._read_surface(tidx, nll, shandle)
|
971 |
+
|
972 |
+
with h5py.File(v_file, "r", libver="latest") as vhandle:
|
973 |
+
lats_vert = vhandle["lat"]
|
974 |
+
lons_vert = vhandle["lon"]
|
975 |
+
|
976 |
+
nll = (len(lats_vert), len(lons_vert))
|
977 |
+
|
978 |
+
tidx = self._date_to_tidx(date, vhandle)
|
979 |
+
|
980 |
+
vdata = self._read_levels(tidx, nll, vhandle)
|
981 |
+
|
982 |
+
data = {"vert": vdata, "surf": sdata}
|
983 |
+
|
984 |
+
return data
|
985 |
+
|
986 |
+
def _read_climate(
|
987 |
+
self, file_pair: tuple[str, str]
|
988 |
+
) -> dict[str, np.ndarray]:
|
989 |
+
s_file, v_file = file_pair
|
990 |
+
|
991 |
+
with h5py.File(s_file, "r", libver="latest") as shandle:
|
992 |
+
lats_surf = shandle["lat"]
|
993 |
+
lons_surf = shandle["lon"]
|
994 |
+
|
995 |
+
nll = (len(lats_surf), len(lons_surf))
|
996 |
+
|
997 |
+
sdata = np.empty((self._nsvars, *nll), dtype=self.rtype)
|
998 |
+
|
999 |
+
for i, key in enumerate(self._svars):
|
1000 |
+
sdata[i] = shandle[key][()].astype(dtype=self.rtype)
|
1001 |
+
|
1002 |
+
with h5py.File(v_file, "r", libver="latest") as vhandle:
|
1003 |
+
lats_vert = vhandle["lat"]
|
1004 |
+
lons_vert = vhandle["lon"]
|
1005 |
+
|
1006 |
+
nll = (len(lats_vert), len(lons_vert))
|
1007 |
+
|
1008 |
+
lvls = vhandle["lev"][()]
|
1009 |
+
lidx = self._level_idxs(lvls)
|
1010 |
+
|
1011 |
+
vdata = np.empty(
|
1012 |
+
(self._nuvars, self._nlevel, *nll), dtype=self.rtype
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
for i, key in enumerate(self._uvars):
|
1016 |
+
vdata[i] = vhandle[key][lidx][()].astype(dtype=self.rtype)
|
1017 |
+
|
1018 |
+
data = {
|
1019 |
+
"vert": np.ascontiguousarray(np.flip(vdata, axis=1)),
|
1020 |
+
"surf": sdata,
|
1021 |
+
}
|
1022 |
+
|
1023 |
+
return data
|
1024 |
+
|
1025 |
+
def get_data_from_sample_spec(
|
1026 |
+
self, spec: SampleSpec
|
1027 |
+
) -> dict[str, Tensor | int | float]:
|
1028 |
+
"""Loads and assembles sample data given a SampleSpec object.
|
1029 |
+
|
1030 |
+
Args:
|
1031 |
+
spec (SampleSpec): Full details regarding the data to be loaded
|
1032 |
+
Returns:
|
1033 |
+
dict: Dictionary with the following keys::
|
1034 |
+
|
1035 |
+
'sur_static': Torch tensor of shape [parameter, lat, lon]. For
|
1036 |
+
each pixel (lat, lon), the first 7 dimensions index sin(lat),
|
1037 |
+
cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod).
|
1038 |
+
Where doy is the day of the year [1, 366] and hod the hour of
|
1039 |
+
the day [0, 23].
|
1040 |
+
'sur_vals': Torch tensor of shape [parameter, time, lat, lon].
|
1041 |
+
'sur_tars': Torch tensor of shape [parameter, time, lat, lon].
|
1042 |
+
'ulv_vals': Torch tensor of shape [parameter, level, time, lat, lon].
|
1043 |
+
'ulv_tars': Torch tensor of shape [parameter, level, time, lat, lon].
|
1044 |
+
'sur_climate': Torch tensor of shape [parameter, lat, lon].
|
1045 |
+
'ulv_climate': Torch tensor of shape [paramter, level, lat, lon].
|
1046 |
+
'lead_time': Float.
|
1047 |
+
'input_time': Float.
|
1048 |
+
|
1049 |
+
""" # noqa: E501
|
1050 |
+
|
1051 |
+
# We assemble the unique timestamps for which we need data.
|
1052 |
+
vals_required = {*spec.times}
|
1053 |
+
stat_required = {*spec.stat_times}
|
1054 |
+
|
1055 |
+
# We assemble the unique data files from which we need value data
|
1056 |
+
vals_file_map = defaultdict(list)
|
1057 |
+
for t in vals_required:
|
1058 |
+
data_files = (
|
1059 |
+
self.data_file_surface(t),
|
1060 |
+
self.data_file_vertical(t),
|
1061 |
+
)
|
1062 |
+
vals_file_map[data_files].append(t)
|
1063 |
+
|
1064 |
+
# We assemble the unique data files from which we need static data
|
1065 |
+
stat_file_map = defaultdict(list)
|
1066 |
+
for t in stat_required:
|
1067 |
+
data_files = (
|
1068 |
+
self.data_file_surface(t),
|
1069 |
+
self.data_file_vertical(t),
|
1070 |
+
)
|
1071 |
+
stat_file_map[data_files].append(t)
|
1072 |
+
|
1073 |
+
# Load the value data
|
1074 |
+
data = {}
|
1075 |
+
for data_files, times in vals_file_map.items():
|
1076 |
+
for time in times:
|
1077 |
+
data[time] = self._read_data(data_files, time)
|
1078 |
+
|
1079 |
+
# Combine times
|
1080 |
+
sample_data = {}
|
1081 |
+
|
1082 |
+
input_upl = np.stack([data[t]["vert"] for t in spec.inputs], axis=2)
|
1083 |
+
sample_data["ulv_vals"] = input_upl
|
1084 |
+
|
1085 |
+
target_upl = data[spec.target]["vert"]
|
1086 |
+
sample_data["ulv_tars"] = target_upl[:, :, None]
|
1087 |
+
|
1088 |
+
input_sur = np.stack([data[t]["surf"] for t in spec.inputs], axis=1)
|
1089 |
+
sample_data["sur_vals"] = input_sur
|
1090 |
+
|
1091 |
+
target_sur = data[spec.target]["surf"]
|
1092 |
+
sample_data["sur_tars"] = target_sur[:, None]
|
1093 |
+
|
1094 |
+
# Load the static data
|
1095 |
+
data_files, times = stat_file_map.popitem()
|
1096 |
+
time = times[0].dayofyear, times[0].hour
|
1097 |
+
sample_data["sur_static"] = self._read_static_data(
|
1098 |
+
data_files[0], *time
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
# If required load the surface data
|
1102 |
+
if self._require_clim:
|
1103 |
+
ci_year, ci_hour = spec.climatology_info
|
1104 |
+
|
1105 |
+
surf_file = self.data_file_surface_climate(
|
1106 |
+
dayofyear=ci_year,
|
1107 |
+
hourofday=ci_hour,
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
vert_file = self.data_file_vertical_climate(
|
1111 |
+
dayofyear=ci_year,
|
1112 |
+
hourofday=ci_hour,
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
clim_data = self._read_climate((surf_file, vert_file))
|
1116 |
+
|
1117 |
+
sample_data["sur_climate"] = clim_data["surf"]
|
1118 |
+
sample_data["ulv_climate"] = clim_data["vert"]
|
1119 |
+
|
1120 |
+
# Move the data from numpy to torch
|
1121 |
+
sample_data = self._to_torch(sample_data, dtype=self.dtype)
|
1122 |
+
|
1123 |
+
# Optionally roll
|
1124 |
+
if len(self._roll_longitudes) > 0:
|
1125 |
+
roll_by = random.choice(self._roll_longitudes)
|
1126 |
+
sample_data = self._lat_roll(sample_data, roll_by)
|
1127 |
+
|
1128 |
+
# Now that we have rolled, we can add the static data
|
1129 |
+
sample_data["lead_time"] = spec.lead_time
|
1130 |
+
sample_data["input_time"] = spec.input_time
|
1131 |
+
|
1132 |
+
return sample_data
|
1133 |
+
|
1134 |
+
def get_data(
|
1135 |
+
self, timestamp: pd.Timestamp, input_time: int, lead_time: int
|
1136 |
+
) -> dict[str, Tensor | int]:
|
1137 |
+
"""
|
1138 |
+
Loads data based on timestamp and lead time.
|
1139 |
+
Args:
|
1140 |
+
timestamp: Timestamp.
|
1141 |
+
input_time: time between input samples.
|
1142 |
+
lead_time: lead time.
|
1143 |
+
Returns:
|
1144 |
+
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
|
1145 |
+
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
|
1146 |
+
'lead_time'.
|
1147 |
+
"""
|
1148 |
+
spec = SampleSpec.get(timestamp, -input_time, lead_time)
|
1149 |
+
sample_data = self.get_data_from_sample_spec(spec)
|
1150 |
+
return sample_data
|
1151 |
+
|
1152 |
+
def __getitem__(self, idx: int) -> dict[str, Tensor | int]:
|
1153 |
+
"""
|
1154 |
+
Loads data based on sample index and random choice of sample.
|
1155 |
+
Args:
|
1156 |
+
idx: Sample index.
|
1157 |
+
Returns:
|
1158 |
+
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
|
1159 |
+
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
|
1160 |
+
'lead_time', 'input_time'.
|
1161 |
+
"""
|
1162 |
+
sample_set = self.samples[idx]
|
1163 |
+
timestamp, input_time, lead_time, *nsteps = random.choice(sample_set)
|
1164 |
+
sample_data = self.get_data(timestamp, input_time, lead_time)
|
1165 |
+
return sample_data
|
1166 |
+
|
1167 |
+
def __len__(self):
|
1168 |
+
return len(self.samples)
|
PrithviWxC/dataloaders/merra2_rollout.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools as ft
|
2 |
+
import random
|
3 |
+
from collections import defaultdict
|
4 |
+
from copy import deepcopy
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
from torch import Tensor
|
11 |
+
|
12 |
+
from PrithviWxC.dataloaders.merra2 import Merra2Dataset, SampleSpec
|
13 |
+
|
14 |
+
|
15 |
+
def preproc(
|
16 |
+
batch: list[dict[str, int | float | Tensor]], padding: dict[tuple[int]]
|
17 |
+
) -> dict[str, Tensor]:
|
18 |
+
"""Prepressing function for MERRA2 Dataset
|
19 |
+
|
20 |
+
Args:
|
21 |
+
batch (dict): List of training samples, each sample should be a
|
22 |
+
dictionary with the following keys::
|
23 |
+
|
24 |
+
'sur_static': Numpy array of shape (3, lat, lon). For each pixel (lat, lon), the first dimension indexes sin(lat), cos(lon), sin(lon).
|
25 |
+
'sur_vals': Torch tensor of shape (parameter, time, lat, lon).
|
26 |
+
'sur_tars': Torch tensor of shape (parameter, time, lat, lon).
|
27 |
+
'ulv_vals': Torch tensor of shape (parameter, level, time, lat, lon).
|
28 |
+
'ulv_tars': Torch tensor of shape (parameter, level, time, lat, lon).
|
29 |
+
'sur_climate': Torch tensor of shape (nstep, parameter, lat, lon)
|
30 |
+
'ulv_climate': Torch tensor of shape (nstep parameter, level, lat, lon)
|
31 |
+
'lead_time': Integer.
|
32 |
+
'input_time': Interger
|
33 |
+
|
34 |
+
padding: Dictionary with keys 'level', 'lat', 'lon', each of dim 2.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
Dictionary with the following keys::
|
38 |
+
|
39 |
+
'x': [batch, time, parameter, lat, lon]
|
40 |
+
'ys': [batch, nsteps, parameter, lat, lon]
|
41 |
+
'static': [batch, nstep, parameter, lat, lon]
|
42 |
+
'lead_time': [batch]
|
43 |
+
'input_time': [batch]
|
44 |
+
'climate (Optional)': [batch, nsteps, parameter, lat, lon]
|
45 |
+
|
46 |
+
Note:
|
47 |
+
Here, for x and ys, 'parameter' is [surface parameter, upper level,
|
48 |
+
parameter x level]. Similarly for the static information we have
|
49 |
+
[sin(lat), cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod),
|
50 |
+
...].
|
51 |
+
""" # noqa: E501
|
52 |
+
|
53 |
+
b0 = batch[0]
|
54 |
+
nbatch = len(batch)
|
55 |
+
data_keys = set(b0.keys())
|
56 |
+
|
57 |
+
essential_keys = {
|
58 |
+
"sur_static",
|
59 |
+
"sur_vals",
|
60 |
+
"sur_tars",
|
61 |
+
"ulv_vals",
|
62 |
+
"ulv_tars",
|
63 |
+
"input_time",
|
64 |
+
"lead_time",
|
65 |
+
}
|
66 |
+
|
67 |
+
climate_keys = {
|
68 |
+
"sur_climate",
|
69 |
+
"ulv_climate",
|
70 |
+
}
|
71 |
+
|
72 |
+
all_keys = essential_keys | climate_keys
|
73 |
+
|
74 |
+
if not essential_keys.issubset(data_keys):
|
75 |
+
raise ValueError("Missing essential keys.")
|
76 |
+
|
77 |
+
if not data_keys.issubset(all_keys):
|
78 |
+
raise ValueError("Unexpected keys in batch.")
|
79 |
+
|
80 |
+
# Bring all tensors from the batch into a single tensor
|
81 |
+
upl_x = torch.empty((nbatch, *b0["ulv_vals"].shape))
|
82 |
+
upl_y = torch.empty((nbatch, *b0["ulv_tars"].shape))
|
83 |
+
|
84 |
+
sur_x = torch.empty((nbatch, *b0["sur_vals"].shape))
|
85 |
+
sur_y = torch.empty((nbatch, *b0["sur_tars"].shape))
|
86 |
+
|
87 |
+
sur_sta = torch.empty((nbatch, *b0["sur_static"].shape))
|
88 |
+
|
89 |
+
lead_time = torch.empty(
|
90 |
+
(nbatch, *b0["lead_time"].shape),
|
91 |
+
dtype=torch.float32,
|
92 |
+
)
|
93 |
+
input_time = torch.empty((nbatch,), dtype=torch.float32)
|
94 |
+
|
95 |
+
for i, rec in enumerate(batch):
|
96 |
+
sur_x[i] = torch.Tensor(rec["sur_vals"])
|
97 |
+
sur_y[i] = torch.Tensor(rec["sur_tars"])
|
98 |
+
|
99 |
+
upl_x[i] = torch.Tensor(rec["ulv_vals"])
|
100 |
+
upl_y[i] = torch.Tensor(rec["ulv_tars"])
|
101 |
+
|
102 |
+
sur_sta[i] = torch.Tensor(rec["sur_static"])
|
103 |
+
|
104 |
+
lead_time[i] = rec["lead_time"]
|
105 |
+
input_time[i] = rec["input_time"]
|
106 |
+
|
107 |
+
return_value = {
|
108 |
+
"lead_time": lead_time,
|
109 |
+
"input_time": input_time,
|
110 |
+
"target_time": torch.sum(lead_time).reshape(-1),
|
111 |
+
}
|
112 |
+
|
113 |
+
# Reshape (batch, parameter, level, time, lat, lon)
|
114 |
+
# -> (batch, time, parameter, level, lat, lon)
|
115 |
+
upl_x = upl_x.permute((0, 3, 1, 2, 4, 5))
|
116 |
+
upl_y = upl_y.permute((0, 3, 1, 2, 4, 5))
|
117 |
+
|
118 |
+
# Reshape (batch, parameter, time, lat, lon)
|
119 |
+
# -> (batch, time, parameter, lat, lon)
|
120 |
+
sur_x = sur_x.permute((0, 2, 1, 3, 4))
|
121 |
+
sur_y = sur_y.permute((0, 2, 1, 3, 4))
|
122 |
+
|
123 |
+
# Pad
|
124 |
+
padding_2d = (*padding["lon"], *padding["lat"])
|
125 |
+
|
126 |
+
def pad2d(x):
|
127 |
+
return torch.nn.functional.pad(x, padding_2d, mode="constant", value=0)
|
128 |
+
|
129 |
+
padding_3d = (*padding["lon"], *padding["lat"], *padding["level"])
|
130 |
+
|
131 |
+
def pad3d(x):
|
132 |
+
return torch.nn.functional.pad(x, padding_3d, mode="constant", value=0)
|
133 |
+
|
134 |
+
sur_x = pad2d(sur_x).contiguous()
|
135 |
+
upl_x = pad3d(upl_x).contiguous()
|
136 |
+
sur_y = pad2d(sur_y).contiguous()
|
137 |
+
upl_y = pad3d(upl_y).contiguous()
|
138 |
+
return_value["statics"] = pad2d(sur_sta).contiguous()
|
139 |
+
|
140 |
+
# We stack along the combined parameter level dimension
|
141 |
+
return_value["x"] = torch.cat(
|
142 |
+
(sur_x, upl_x.view(*upl_x.shape[:2], -1, *upl_x.shape[4:])), dim=2
|
143 |
+
)
|
144 |
+
return_value["ys"] = torch.cat(
|
145 |
+
(sur_y, upl_y.view(*upl_y.shape[:2], -1, *upl_y.shape[4:])), dim=2
|
146 |
+
)
|
147 |
+
|
148 |
+
if climate_keys.issubset(data_keys):
|
149 |
+
sur_climate = torch.empty((nbatch, *b0["sur_climate"].shape))
|
150 |
+
ulv_climate = torch.empty((nbatch, *b0["ulv_climate"].shape))
|
151 |
+
for i, rec in enumerate(batch):
|
152 |
+
sur_climate[i] = rec["sur_climate"]
|
153 |
+
ulv_climate[i] = rec["ulv_climate"]
|
154 |
+
sur_climate = pad2d(sur_climate)
|
155 |
+
ulv_climate = pad3d(ulv_climate)
|
156 |
+
|
157 |
+
ulv_climate = ulv_climate.view(
|
158 |
+
*ulv_climate.shape[:2], -1, *ulv_climate.shape[4:]
|
159 |
+
)
|
160 |
+
return_value["climates"] = torch.cat((sur_climate, ulv_climate), dim=2)
|
161 |
+
|
162 |
+
return return_value
|
163 |
+
|
164 |
+
|
165 |
+
class RolloutSpec(SampleSpec):
|
166 |
+
"""
|
167 |
+
A data class to collect the information used to define a rollout sample.
|
168 |
+
"""
|
169 |
+
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
inputs: tuple[pd.Timestamp, pd.Timestamp],
|
173 |
+
lead_time: int,
|
174 |
+
target: pd.Timestamp,
|
175 |
+
):
|
176 |
+
"""
|
177 |
+
Args:
|
178 |
+
inputs: Tuple of timestamps. In ascending order.
|
179 |
+
lead_time: Lead time. In hours.
|
180 |
+
target: Timestamp of the target. Can be before or after the inputs.
|
181 |
+
"""
|
182 |
+
super().__init__(inputs, lead_time, target)
|
183 |
+
|
184 |
+
self.dt = dt = pd.Timedelta(lead_time, unit="h")
|
185 |
+
self.inters = list(pd.date_range(inputs[-1], target, freq=dt))
|
186 |
+
|
187 |
+
self._ctimes = deepcopy(self.inters)
|
188 |
+
self.stat_times = deepcopy(self.inters)
|
189 |
+
|
190 |
+
self.stat_times.pop(-1)
|
191 |
+
self._ctimes.pop(0)
|
192 |
+
self.inters.pop(0)
|
193 |
+
self.inters.pop(-1)
|
194 |
+
|
195 |
+
self.times = [*inputs, *self.inters, target]
|
196 |
+
self.targets = self.times[2:]
|
197 |
+
self.nsteps = len(self.times) - 2
|
198 |
+
|
199 |
+
@property
|
200 |
+
def climatology_info(self) -> dict[pd.Timestamp, tuple[int, int]]:
|
201 |
+
"""Returns information required to obtain climatology data.
|
202 |
+
Returns:
|
203 |
+
list: list containing required climatology info.
|
204 |
+
"""
|
205 |
+
return [(min(t.dayofyear, 365), t.hour) for t in self._ctimes]
|
206 |
+
|
207 |
+
def _info_str(self) -> str:
|
208 |
+
iso_8601 = "%Y-%m-%dT%H:%M:%S"
|
209 |
+
|
210 |
+
inter_str = "\n".join(t.strftime(iso_8601) for t in self.inters)
|
211 |
+
|
212 |
+
return (
|
213 |
+
f"Issue time: {self.inputs[1].strftime(iso_8601)}\n"
|
214 |
+
f"Lead time: {self.lead_time} hours ahead\n"
|
215 |
+
f"Target time: {self.target.strftime(iso_8601)}\n"
|
216 |
+
f"Intermediate times: {inter_str}"
|
217 |
+
)
|
218 |
+
|
219 |
+
@classmethod
|
220 |
+
def get(cls, timestamp: pd.Timestamp, lead_time: int, nsteps: int):
|
221 |
+
"""Given a timestamp and lead time, generates a RolloutSpec object
|
222 |
+
describing the sample further.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
timestamp: Timstamp (issue time) of the sample.
|
226 |
+
lead_time: Lead time. In hours.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
SampleSpec object.
|
230 |
+
"""
|
231 |
+
if lead_time > 0:
|
232 |
+
dt = pd.to_timedelta(lead_time, unit="h")
|
233 |
+
timestamp_target = timestamp + nsteps * dt
|
234 |
+
else:
|
235 |
+
raise ValueError("Rollout is only forwards")
|
236 |
+
|
237 |
+
spec = cls(
|
238 |
+
inputs=(timestamp - dt, timestamp),
|
239 |
+
lead_time=lead_time,
|
240 |
+
target=timestamp_target,
|
241 |
+
)
|
242 |
+
|
243 |
+
return spec
|
244 |
+
|
245 |
+
def __repr__(self) -> str:
|
246 |
+
return self._info_str()
|
247 |
+
|
248 |
+
def __str__(self) -> str:
|
249 |
+
return self._info_str()
|
250 |
+
|
251 |
+
|
252 |
+
class Merra2RolloutDataset(Merra2Dataset):
|
253 |
+
"""Dataset class that read MERRA2 data for performing rollout.
|
254 |
+
|
255 |
+
Implementation details::
|
256 |
+
|
257 |
+
Samples stores the list of valid samples. This takes the form
|
258 |
+
```
|
259 |
+
[
|
260 |
+
[(timestamp 1, -input_time, n_steps)],
|
261 |
+
[(timestamp 2, -input_time, n_steps)],
|
262 |
+
]
|
263 |
+
```
|
264 |
+
The nested list is for compatibility reasons with Merra2Dataset. Note
|
265 |
+
that input time and n_steps are always the same value. For some reason
|
266 |
+
the sign of input_time is the opposite to that in Merra2Dataset
|
267 |
+
"""
|
268 |
+
|
269 |
+
input_time_len = 2
|
270 |
+
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
time_range: tuple[str | pd.Timestamp, str | pd.Timestamp],
|
274 |
+
input_time: int | float | pd.Timedelta,
|
275 |
+
lead_time: int | float,
|
276 |
+
data_path_surface: str | Path,
|
277 |
+
data_path_vertical: str | Path,
|
278 |
+
climatology_path_surface: str | Path | None,
|
279 |
+
climatology_path_vertical: str | Path | None,
|
280 |
+
surface_vars: list[str],
|
281 |
+
static_surface_vars: list[str],
|
282 |
+
vertical_vars: list[str],
|
283 |
+
levels: list[float],
|
284 |
+
roll_longitudes: int = 0,
|
285 |
+
positional_encoding: str = "absolute",
|
286 |
+
):
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
time_range: time range to consider when building dataset
|
290 |
+
input_time: requested time between inputs
|
291 |
+
lead_time: requested time to predict
|
292 |
+
data_path_surface: path of surface data directory
|
293 |
+
data_path_vertical: path of vertical data directory
|
294 |
+
climatology_path_surface: path of surface climatology data
|
295 |
+
directory
|
296 |
+
climatology_path_vertical: path of vertical climatology data
|
297 |
+
directory
|
298 |
+
surface_vars: surface variables to return
|
299 |
+
static_surface_vars: static surface variables to return
|
300 |
+
vertical_vars: vertical variables to return
|
301 |
+
levels: MERA2 vertical levels to consider
|
302 |
+
roll_longitudes: Whether and now uch to randomly roll latitudes by.
|
303 |
+
Defaults to 0.
|
304 |
+
positional_encoding: The type of possitional encodeing to use.
|
305 |
+
Defaults to "absolute".
|
306 |
+
|
307 |
+
Raises:
|
308 |
+
ValueError: If lead time is not integer multiple of input time
|
309 |
+
"""
|
310 |
+
|
311 |
+
self._target_lead = lead_time
|
312 |
+
|
313 |
+
if isinstance(input_time, int) or isinstance(input_time, float):
|
314 |
+
self.timedelta_input = pd.to_timedelta(-input_time, unit="h")
|
315 |
+
else:
|
316 |
+
self.timedelta_input = -input_time
|
317 |
+
|
318 |
+
lead_times = [self.timedelta_input / pd.to_timedelta(1, unit="h")]
|
319 |
+
|
320 |
+
super().__init__(
|
321 |
+
time_range,
|
322 |
+
lead_times,
|
323 |
+
[input_time],
|
324 |
+
data_path_surface,
|
325 |
+
data_path_vertical,
|
326 |
+
climatology_path_surface,
|
327 |
+
climatology_path_vertical,
|
328 |
+
surface_vars,
|
329 |
+
static_surface_vars,
|
330 |
+
vertical_vars,
|
331 |
+
levels,
|
332 |
+
roll_longitudes,
|
333 |
+
positional_encoding,
|
334 |
+
)
|
335 |
+
|
336 |
+
nstep_float = (
|
337 |
+
pd.to_timedelta(self._target_lead, unit="h") / self.timedelta_input
|
338 |
+
)
|
339 |
+
|
340 |
+
if abs(nstep_float % 1) > 1e-5:
|
341 |
+
raise ValueError("Leadtime not multiple of input time")
|
342 |
+
|
343 |
+
self.nsteps = round(nstep_float)
|
344 |
+
|
345 |
+
@ft.cached_property
|
346 |
+
def samples(self) -> list[tuple[pd.Timestamp, int, int]]:
|
347 |
+
"""Generates list of all valid samlpes.
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
List of tuples (timestamp, input time, lead time).
|
351 |
+
"""
|
352 |
+
valid_samples = []
|
353 |
+
|
354 |
+
for timestamp in sorted(self.valid_timestamps):
|
355 |
+
timestamp_samples = []
|
356 |
+
for lt in self.lead_times:
|
357 |
+
spec = RolloutSpec.get(timestamp, lt, self.nsteps)
|
358 |
+
|
359 |
+
if self._data_available(spec):
|
360 |
+
timestamp_samples.append(
|
361 |
+
(timestamp, self.input_times[0], lt, self.nsteps)
|
362 |
+
)
|
363 |
+
|
364 |
+
if timestamp_samples:
|
365 |
+
valid_samples.append(timestamp_samples)
|
366 |
+
|
367 |
+
return valid_samples
|
368 |
+
|
369 |
+
def get_data_from_rollout_spec(
|
370 |
+
self, spec: RolloutSpec
|
371 |
+
) -> dict[str, Tensor | int | float]:
|
372 |
+
"""Loads and assembles sample data given a RolloutSpec object.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
spec (RolloutSpec): Full details regarding the data to be loaded
|
376 |
+
Returns:
|
377 |
+
dict: Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
|
378 |
+
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',c'lead_time',
|
379 |
+
'input_time'. For each, the value is as follows::
|
380 |
+
|
381 |
+
{
|
382 |
+
'sur_static': Torch tensor of shape [parameter, lat, lon]. For
|
383 |
+
each pixel (lat, lon), the first 7 dimensions index sin(lat),
|
384 |
+
cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod).
|
385 |
+
Where doy is the day of the year [1, 366] and hod the hour of
|
386 |
+
the day [0, 23].
|
387 |
+
'sur_vals': Torch tensor of shape [parameter, time, lat, lon].
|
388 |
+
'sur_tars': Torch tensor of shape [parameter, time, lat, lon].
|
389 |
+
'ulv_vals': Torch tensor of shape
|
390 |
+
[parameter, level, time, lat, lon].
|
391 |
+
'ulv_tars': Torch tensor of shape
|
392 |
+
[nsteps, parameter, level, time, lat, lon].
|
393 |
+
'sur_climate': Torch tensor of shape
|
394 |
+
[nsteps, parameter, lat, lon].
|
395 |
+
'ulv_climate': Torch tensor of shape
|
396 |
+
[nsteps, paramter, level, lat, lon].
|
397 |
+
'lead_time': Float.
|
398 |
+
'input_time': Float.
|
399 |
+
}
|
400 |
+
|
401 |
+
"""
|
402 |
+
|
403 |
+
# We assemble the unique timestamps for which we need data.
|
404 |
+
vals_required = {*spec.times}
|
405 |
+
stat_required = {*spec.stat_times}
|
406 |
+
|
407 |
+
# We assemble the unique data files from which we need value data
|
408 |
+
vals_file_map = defaultdict(list)
|
409 |
+
for t in vals_required:
|
410 |
+
data_files = (
|
411 |
+
self.data_file_surface(t),
|
412 |
+
self.data_file_vertical(t),
|
413 |
+
)
|
414 |
+
vals_file_map[data_files].append(t)
|
415 |
+
|
416 |
+
# We assemble the unique data files from which we need static data
|
417 |
+
stat_file_map = defaultdict(list)
|
418 |
+
for t in stat_required:
|
419 |
+
data_files = (
|
420 |
+
self.data_file_surface(t),
|
421 |
+
self.data_file_vertical(t),
|
422 |
+
)
|
423 |
+
stat_file_map[data_files].append(t)
|
424 |
+
|
425 |
+
# Load the value data
|
426 |
+
data = {}
|
427 |
+
for data_files, times in vals_file_map.items():
|
428 |
+
for time in times:
|
429 |
+
data[time] = self._read_data(data_files, time)
|
430 |
+
|
431 |
+
# Load the static data
|
432 |
+
stat = {}
|
433 |
+
for data_files, times in stat_file_map.items():
|
434 |
+
for time in times:
|
435 |
+
hod, doy = time.hour, time.dayofyear
|
436 |
+
stat[time] = self._read_static_data(data_files[0], hod, doy)
|
437 |
+
|
438 |
+
# Combine times
|
439 |
+
sample_data = {}
|
440 |
+
|
441 |
+
input_upl = np.stack([data[t]["vert"] for t in spec.inputs], axis=2)
|
442 |
+
sample_data["ulv_vals"] = input_upl
|
443 |
+
|
444 |
+
target_upl = np.stack([data[t]["vert"] for t in spec.targets], axis=2)
|
445 |
+
sample_data["ulv_tars"] = target_upl
|
446 |
+
|
447 |
+
input_sur = np.stack([data[t]["surf"] for t in spec.inputs], axis=1)
|
448 |
+
sample_data["sur_vals"] = input_sur
|
449 |
+
|
450 |
+
target_sur = np.stack([data[t]["surf"] for t in spec.targets], axis=1)
|
451 |
+
sample_data["sur_tars"] = target_sur
|
452 |
+
|
453 |
+
# Load the static data
|
454 |
+
static = np.stack([stat[t] for t in spec.stat_times], axis=0)
|
455 |
+
sample_data["sur_static"] = static
|
456 |
+
|
457 |
+
# If required load the climate data
|
458 |
+
if self._require_clim:
|
459 |
+
clim_data = {}
|
460 |
+
for ci in spec.climatology_info:
|
461 |
+
ci_year, ci_hour = ci
|
462 |
+
|
463 |
+
surf_file = self.data_file_surface_climate(
|
464 |
+
dayofyear=ci_year,
|
465 |
+
hourofday=ci_hour,
|
466 |
+
)
|
467 |
+
|
468 |
+
vert_file = self.data_file_vertical_climate(
|
469 |
+
dayofyear=ci_year,
|
470 |
+
hourofday=ci_hour,
|
471 |
+
)
|
472 |
+
|
473 |
+
clim_data[ci] = self._read_climate((surf_file, vert_file))
|
474 |
+
|
475 |
+
clim_surf = [clim_data[ci]["surf"] for ci in spec.climatology_info]
|
476 |
+
sample_data["sur_climate"] = np.stack(clim_surf, axis=0)
|
477 |
+
|
478 |
+
clim_surf = [clim_data[ci]["vert"] for ci in spec.climatology_info]
|
479 |
+
sample_data["ulv_climate"] = np.stack(clim_surf, axis=0)
|
480 |
+
|
481 |
+
# Move the data from numpy to torch
|
482 |
+
sample_data = self._to_torch(sample_data, dtype=self.dtype)
|
483 |
+
|
484 |
+
# Optionally roll
|
485 |
+
if len(self._roll_longitudes) > 0:
|
486 |
+
roll_by = random.choice(self._roll_longitudes)
|
487 |
+
sample_data = self._lat_roll(sample_data, roll_by)
|
488 |
+
|
489 |
+
# Now that we have rolled, we can add the static data
|
490 |
+
lt = torch.tensor([spec.lead_time] * self.nsteps).to(self.dtype)
|
491 |
+
sample_data["lead_time"] = lt
|
492 |
+
sample_data["input_time"] = spec.input_time
|
493 |
+
|
494 |
+
return sample_data
|
495 |
+
|
496 |
+
def get_data(
|
497 |
+
self, timestamp: pd.Timestamp, *args, **kwargs
|
498 |
+
) -> dict[Tensor | int]:
|
499 |
+
"""Loads data based on timestamp and lead time.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
timestamp: Timestamp.
|
503 |
+
Returns:
|
504 |
+
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
|
505 |
+
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
|
506 |
+
'lead_time', 'input_time'
|
507 |
+
"""
|
508 |
+
rollout_spec = RolloutSpec.get(
|
509 |
+
timestamp, self.lead_times[0], self.nsteps
|
510 |
+
)
|
511 |
+
sample_data = self.get_data_from_rollout_spec(rollout_spec)
|
512 |
+
return sample_data
|
PrithviWxC/model.py
ADDED
@@ -0,0 +1,1321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import cached_property
|
2 |
+
from importlib.metadata import version
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.utils.checkpoint import checkpoint
|
6 |
+
|
7 |
+
if version("torch") > "2.3.0":
|
8 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
# DropPath code is straight from timm
|
16 |
+
# (https://huggingface.co/spaces/Roll20/pet_score/blame/main/lib/timm/models/layers/drop.py)
|
17 |
+
def drop_path(
|
18 |
+
x: Tensor,
|
19 |
+
drop_prob: float = 0.0,
|
20 |
+
training: bool = False,
|
21 |
+
scale_by_keep: bool = True,
|
22 |
+
) -> Tensor:
|
23 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
|
24 |
+
residual blocks). Taken form timm.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
x (Tensor): Input tensor.
|
28 |
+
drop_prob (float): Probability of dropping `x`, defaults to 0.
|
29 |
+
training (bool): Whether model is in in traingin of eval mode,
|
30 |
+
defaults to False.
|
31 |
+
scale_by_keep (bool): Whether the output should scaled by
|
32 |
+
(`1 - drop_prob`), defaults to True.
|
33 |
+
Returns:
|
34 |
+
Tensor: Tensor that may have randomly dropped with proability
|
35 |
+
`drop_path`
|
36 |
+
"""
|
37 |
+
if drop_prob == 0.0 or not training:
|
38 |
+
return x
|
39 |
+
keep_prob = 1 - drop_prob
|
40 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
41 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
42 |
+
if keep_prob > 0.0 and scale_by_keep:
|
43 |
+
random_tensor.div_(keep_prob)
|
44 |
+
return x * random_tensor
|
45 |
+
|
46 |
+
|
47 |
+
class DropPath(nn.Module):
|
48 |
+
"""
|
49 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of
|
50 |
+
residual blocks).
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self, drop_prob: float | None = None, scale_by_keep: bool = True
|
55 |
+
) -> None:
|
56 |
+
super(DropPath, self).__init__()
|
57 |
+
self.drop_prob = drop_prob
|
58 |
+
self.scale_by_keep = scale_by_keep
|
59 |
+
|
60 |
+
def forward(self, x: Tensor) -> Tensor:
|
61 |
+
"""Runs drop path on input tensor
|
62 |
+
|
63 |
+
Args:
|
64 |
+
x: input
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
tensor: output after drop_path
|
68 |
+
"""
|
69 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
70 |
+
|
71 |
+
|
72 |
+
class Mlp(nn.Module):
|
73 |
+
"""
|
74 |
+
Multi layer perceptron.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self, features: int, hidden_features: int, dropout: float = 0.0
|
79 |
+
) -> None:
|
80 |
+
"""
|
81 |
+
Args:
|
82 |
+
features: Input/output dimension.
|
83 |
+
hidden_features: Hidden dimension.
|
84 |
+
dropout: Dropout.
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.net = nn.Sequential(
|
88 |
+
nn.Linear(features, hidden_features),
|
89 |
+
nn.GELU(),
|
90 |
+
nn.Dropout(dropout),
|
91 |
+
nn.Linear(hidden_features, features),
|
92 |
+
nn.Dropout(dropout),
|
93 |
+
)
|
94 |
+
|
95 |
+
def forward(self, x: Tensor) -> Tensor:
|
96 |
+
"""
|
97 |
+
Args:
|
98 |
+
x (Tesnor): Tensor of shape [..., channel]
|
99 |
+
Returns:
|
100 |
+
Tenosr: Tensor of same shape as x.
|
101 |
+
"""
|
102 |
+
return self.net(x)
|
103 |
+
|
104 |
+
|
105 |
+
class LayerNormPassThrough(nn.LayerNorm):
|
106 |
+
"""Normalising layer that allows the attention mask to be passed through"""
|
107 |
+
|
108 |
+
def __init__(self, *args, **kwargs):
|
109 |
+
super().__init__(*args, **kwargs)
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self, d: tuple[Tensor, Tensor | None]
|
113 |
+
) -> tuple[Tensor, Tensor | None]:
|
114 |
+
"""Forwards function
|
115 |
+
|
116 |
+
Args:
|
117 |
+
d (tuple): tuple of the data tensor and the attention mask
|
118 |
+
Returns:
|
119 |
+
output (Tensor): normalised output data
|
120 |
+
attn_mask (Tensor): the attention mask that was passed in
|
121 |
+
"""
|
122 |
+
input, attn_mask = d
|
123 |
+
output = F.layer_norm(
|
124 |
+
input, self.normalized_shape, self.weight, self.bias, self.eps
|
125 |
+
)
|
126 |
+
return output, attn_mask
|
127 |
+
|
128 |
+
|
129 |
+
class MultiheadAttention(nn.Module):
|
130 |
+
"""Multihead attention layer for inputs of shape
|
131 |
+
[..., sequence, features].
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, features: int, n_heads: int, dropout: float) -> None:
|
135 |
+
"""
|
136 |
+
Args:
|
137 |
+
features: Number of features for inputs to the layer.
|
138 |
+
n_heads: Number of attention heads. Should be a factor of features.
|
139 |
+
(I.e. the layer uses features // n_heads.)
|
140 |
+
dropout: Dropout.
|
141 |
+
""" # noqa: E501
|
142 |
+
super().__init__()
|
143 |
+
|
144 |
+
if (features % n_heads) != 0:
|
145 |
+
raise ValueError(
|
146 |
+
f"Features '{features}' is not divisible by heads '{n_heads}'."
|
147 |
+
)
|
148 |
+
|
149 |
+
self.features = features
|
150 |
+
self.n_heads = n_heads
|
151 |
+
self.dropout = dropout
|
152 |
+
|
153 |
+
self.qkv_layer = torch.nn.Linear(features, features * 3, bias=False)
|
154 |
+
self.w_layer = torch.nn.Linear(features, features, bias=False)
|
155 |
+
|
156 |
+
def forward(self, d: tuple[Tensor, Tensor | None]) -> Tensor:
|
157 |
+
"""
|
158 |
+
Args:
|
159 |
+
d (tuple): tuple containing Tensor of shape [..., sequence, features] and the attention mask
|
160 |
+
Returns:
|
161 |
+
Tensor: Tensor of shape [..., sequence, features]
|
162 |
+
""" # noqa: E501
|
163 |
+
x, attn_mask = d
|
164 |
+
|
165 |
+
if not x.shape[-1] == self.features:
|
166 |
+
raise ValueError(
|
167 |
+
f"Expecting tensor with last dimension size {self.features}."
|
168 |
+
)
|
169 |
+
|
170 |
+
passenger_dims = x.shape[:-2]
|
171 |
+
B = passenger_dims.numel()
|
172 |
+
S = x.shape[-2]
|
173 |
+
C = x.shape[-1]
|
174 |
+
x = x.reshape(B, S, C)
|
175 |
+
|
176 |
+
# x [B, S, C]
|
177 |
+
# q, k, v [B, H, S, C/H]
|
178 |
+
q, k, v = (
|
179 |
+
self.qkv_layer(x)
|
180 |
+
.view(B, S, self.n_heads, 3 * (C // self.n_heads))
|
181 |
+
.transpose(1, 2)
|
182 |
+
.chunk(chunks=3, dim=3)
|
183 |
+
)
|
184 |
+
|
185 |
+
# Let us enforce either flash (A100+) or memory efficient attention.
|
186 |
+
if version("torch") > "2.3.0":
|
187 |
+
with sdpa_kernel(
|
188 |
+
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
|
189 |
+
):
|
190 |
+
# x [B, H, S, C//H]
|
191 |
+
x = F.scaled_dot_product_attention(
|
192 |
+
q, k, v, attn_mask=attn_mask, dropout_p=self.dropout
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
with torch.backends.cuda.sdp_kernel(
|
196 |
+
enable_flash=True, enable_math=False, enable_mem_efficient=True
|
197 |
+
):
|
198 |
+
# x [B, H, S, C//H]
|
199 |
+
x = F.scaled_dot_product_attention(
|
200 |
+
q, k, v, dropout_p=self.dropout
|
201 |
+
)
|
202 |
+
|
203 |
+
# x [B, S, C]
|
204 |
+
x = x.transpose(1, 2).view(B, S, C)
|
205 |
+
|
206 |
+
# x [B, S, C]
|
207 |
+
x = self.w_layer(x)
|
208 |
+
|
209 |
+
# Back to input shape
|
210 |
+
x = x.view(*passenger_dims, S, self.features)
|
211 |
+
return x
|
212 |
+
|
213 |
+
|
214 |
+
class Transformer(nn.Module):
|
215 |
+
"""
|
216 |
+
Transformer for inputs of shape [..., S, features].
|
217 |
+
"""
|
218 |
+
|
219 |
+
def __init__(
|
220 |
+
self,
|
221 |
+
features: int,
|
222 |
+
mlp_multiplier: int,
|
223 |
+
n_heads: int,
|
224 |
+
dropout: float,
|
225 |
+
drop_path: float,
|
226 |
+
) -> None:
|
227 |
+
"""
|
228 |
+
Args:
|
229 |
+
features: Number of features for inputs to the layer.
|
230 |
+
mlp_multiplier: Model uses features*mlp_multiplier hidden units.
|
231 |
+
n_heads: Number of attention heads. Should be a factor of features.
|
232 |
+
(I.e. the layer uses features // n_heads.) dropout: Dropout.
|
233 |
+
drop_path: DropPath.
|
234 |
+
"""
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
self.features = features
|
238 |
+
self.mlp_multiplier = mlp_multiplier
|
239 |
+
self.n_heads = n_heads
|
240 |
+
self.dropout = dropout
|
241 |
+
self.drop_path = (
|
242 |
+
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
243 |
+
)
|
244 |
+
|
245 |
+
self.attention = nn.Sequential(
|
246 |
+
LayerNormPassThrough(features),
|
247 |
+
MultiheadAttention(features, n_heads, dropout),
|
248 |
+
)
|
249 |
+
|
250 |
+
self.ff = nn.Sequential(
|
251 |
+
nn.LayerNorm(features),
|
252 |
+
Mlp(
|
253 |
+
features=features,
|
254 |
+
hidden_features=features * mlp_multiplier,
|
255 |
+
dropout=dropout,
|
256 |
+
),
|
257 |
+
)
|
258 |
+
|
259 |
+
def forward(self, d: tuple[Tensor, Tensor | None]) -> Tensor:
|
260 |
+
"""
|
261 |
+
Args:
|
262 |
+
x: Tensor of shape [..., sequence, features]
|
263 |
+
Returns:
|
264 |
+
Tensor: Tensor of shape [..., sequence, features]
|
265 |
+
"""
|
266 |
+
x, attn_mask = d
|
267 |
+
if not x.shape[-1] == self.features:
|
268 |
+
raise ValueError(
|
269 |
+
f"Expecting tensor with last dimension size {self.features}."
|
270 |
+
)
|
271 |
+
|
272 |
+
attention_x = self.attention(d)
|
273 |
+
|
274 |
+
x = x + self.drop_path(attention_x)
|
275 |
+
x = x + self.drop_path(self.ff(x))
|
276 |
+
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class _Shift(nn.Module):
|
281 |
+
"""Private base class for the shifter. This allows some behaviour to be
|
282 |
+
easily handled when the shifter isn't used.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(self):
|
286 |
+
super().__init__()
|
287 |
+
|
288 |
+
self._shifted = False
|
289 |
+
|
290 |
+
@torch.no_grad()
|
291 |
+
def reset(self) -> None:
|
292 |
+
"""
|
293 |
+
Resets the bool tracking whether the data is shifted
|
294 |
+
"""
|
295 |
+
self._shifted: bool = False
|
296 |
+
|
297 |
+
def forward(self, data: Tensor) -> tuple[Tensor, dict[bool, None]]:
|
298 |
+
return data, {True: None, False: None}
|
299 |
+
|
300 |
+
|
301 |
+
class SWINShift(_Shift):
|
302 |
+
"""
|
303 |
+
Handles the shifting of patches similar to how SWIN works. However if we
|
304 |
+
shift the latitudes then the poles will wrap and potentially that might be
|
305 |
+
problematic. The possition tokens should handle it but masking is safer.
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
mu_shape: tuple[int, int],
|
311 |
+
global_shape: tuple[int, int],
|
312 |
+
local_shape: tuple[int, int],
|
313 |
+
patch_shape: tuple[int, int],
|
314 |
+
n_context_tokens: int = 2,
|
315 |
+
) -> None:
|
316 |
+
"""
|
317 |
+
Args:
|
318 |
+
mu_shape: the shape to the masking units
|
319 |
+
global_shape: number of global patches in lat and lon
|
320 |
+
local_shape: size of the local patches
|
321 |
+
patch_shape: patch size
|
322 |
+
n_context_token: number of additional context tokens at start of
|
323 |
+
_each_ local sequence
|
324 |
+
"""
|
325 |
+
super().__init__()
|
326 |
+
|
327 |
+
self._mu_shape = ms = mu_shape
|
328 |
+
self._g_shape = gs = global_shape
|
329 |
+
self._l_shape = ls = local_shape
|
330 |
+
self._p_shape = ps = patch_shape
|
331 |
+
self._lat_patch = (gs[0], ls[0], gs[1], ls[1])
|
332 |
+
self._n_context_tokens = n_context_tokens
|
333 |
+
|
334 |
+
self._g_shift_to = tuple(
|
335 |
+
int(0.5 * x / p) for x, p in zip(ms, ps, strict=False)
|
336 |
+
)
|
337 |
+
self._g_shift_from = tuple(
|
338 |
+
-int(0.5 * x / p) for x, p in zip(ms, ps, strict=False)
|
339 |
+
)
|
340 |
+
|
341 |
+
# Define the attention masks for the shifted MaxViT.
|
342 |
+
nglobal = global_shape[0] * global_shape[1]
|
343 |
+
nlocal = (
|
344 |
+
local_shape[0] * local_shape[1] + self._n_context_tokens
|
345 |
+
) # "+ 1" for leadtime
|
346 |
+
|
347 |
+
lm = torch.ones((nglobal, 1, nlocal, nlocal), dtype=bool)
|
348 |
+
mwidth = int(0.5 * local_shape[1]) * local_shape[0]
|
349 |
+
lm[
|
350 |
+
: gs[1],
|
351 |
+
:,
|
352 |
+
self._n_context_tokens : mwidth + self._n_context_tokens,
|
353 |
+
self._n_context_tokens : mwidth + self._n_context_tokens,
|
354 |
+
] = False
|
355 |
+
self.register_buffer("local_mask", lm)
|
356 |
+
|
357 |
+
gm = torch.ones((nlocal, 1, nglobal, nglobal), dtype=bool)
|
358 |
+
gm[: int(0.5 * ls[1]) * ls[0], :, : gs[1], : gs[1]] = False
|
359 |
+
self.register_buffer("global_mask", gm)
|
360 |
+
|
361 |
+
def _to_grid_global(self, x: Tensor) -> Tensor:
|
362 |
+
"""
|
363 |
+
Shuffle and reshape the data from the global/local setting back to the
|
364 |
+
lat/lon grid setting
|
365 |
+
Args:
|
366 |
+
x: the data tensor to be shuffled.
|
367 |
+
Returns:
|
368 |
+
x: data in the global/local setting
|
369 |
+
"""
|
370 |
+
nbatch, *other = x.shape
|
371 |
+
|
372 |
+
y1 = x.view(nbatch, *self._g_shape, *self._l_shape, -1)
|
373 |
+
y2 = y1.permute(0, 5, 1, 3, 2, 4).contiguous()
|
374 |
+
|
375 |
+
s = y2.shape
|
376 |
+
return y2.view((nbatch, -1, s[2] * s[3], s[4] * s[5]))
|
377 |
+
|
378 |
+
def _to_grid_local(self, x: Tensor) -> Tensor:
|
379 |
+
"""
|
380 |
+
Shuffle and reshape the data from the local/global setting to the
|
381 |
+
lat/lon grid setting
|
382 |
+
Args:
|
383 |
+
x: the data tensor to be shuffled.
|
384 |
+
Returns:
|
385 |
+
x: data in the lat/lon setting.
|
386 |
+
"""
|
387 |
+
x = x.transpose(2, 1).contiguous()
|
388 |
+
return self._to_grid_global(x)
|
389 |
+
|
390 |
+
def _from_grid_global(self, x: Tensor) -> Tensor:
|
391 |
+
"""
|
392 |
+
Shuffle and reshape the data from the lat/lon grid to the global/local
|
393 |
+
setting
|
394 |
+
Args:
|
395 |
+
x: the data tensor to be shuffled.
|
396 |
+
Returns:
|
397 |
+
x: data in the global/local setting
|
398 |
+
"""
|
399 |
+
nbatch, *other = x.shape
|
400 |
+
|
401 |
+
z1 = x.view(nbatch, -1, *self._lat_patch)
|
402 |
+
z2 = z1.permute(0, 2, 4, 3, 5, 1).contiguous()
|
403 |
+
|
404 |
+
s = z2.shape
|
405 |
+
return z2.view(nbatch, s[1] * s[2], s[3] * s[4], -1)
|
406 |
+
|
407 |
+
def _from_grid_local(self, x: Tensor) -> Tensor:
|
408 |
+
"""
|
409 |
+
Shuffle and reshape the data from the lat/lon grid to the local/global
|
410 |
+
setting
|
411 |
+
Args:
|
412 |
+
x: the data tensor to be shuffled.
|
413 |
+
Returns:
|
414 |
+
x: data in the local/global setting
|
415 |
+
"""
|
416 |
+
x = self._from_grid_global(x)
|
417 |
+
return x.transpose(2, 1).contiguous()
|
418 |
+
|
419 |
+
def _shift(self, x: Tensor) -> Tensor:
|
420 |
+
"""
|
421 |
+
Shifts data in the gridded lat/lon setting by half the mask unit shape
|
422 |
+
Args:
|
423 |
+
x: data to be shifted
|
424 |
+
Returns:
|
425 |
+
x: either the hsifted or unshifted data
|
426 |
+
"""
|
427 |
+
shift = self._g_shift_from if self._shifted else self._g_shift_to
|
428 |
+
x_shifted = torch.roll(x, shift, (-2, -1))
|
429 |
+
|
430 |
+
self._shifted = not self._shifted
|
431 |
+
return x_shifted
|
432 |
+
|
433 |
+
def _sep_lt(self, x: Tensor) -> tuple[Tensor, Tensor]:
|
434 |
+
"""
|
435 |
+
Seperate off the leadtime from the local patches
|
436 |
+
Args:
|
437 |
+
x: data to have leadtime removed from
|
438 |
+
Returns:
|
439 |
+
lt: leadtime
|
440 |
+
x: data without the lead time in the local patch
|
441 |
+
"""
|
442 |
+
lt_it = x[:, : self._n_context_tokens, :, :]
|
443 |
+
x_stripped = x[:, self._n_context_tokens :, :, :]
|
444 |
+
|
445 |
+
return lt_it, x_stripped
|
446 |
+
|
447 |
+
def forward(self, data: Tensor) -> tuple[Tensor, Tensor]:
|
448 |
+
"""Shift or unshift the the data depending on whether the data is
|
449 |
+
already shifted, as defined by self._shifte.
|
450 |
+
|
451 |
+
Args:
|
452 |
+
data: data to be shifted
|
453 |
+
Returns:
|
454 |
+
Tensor: shifted data Tensor
|
455 |
+
"""
|
456 |
+
lt, x = self._sep_lt(data)
|
457 |
+
|
458 |
+
x_grid = self._to_grid_local(x)
|
459 |
+
x_shifted = self._shift(x_grid)
|
460 |
+
x_patched = self._from_grid_local(x_shifted)
|
461 |
+
|
462 |
+
# Mask has to be repeated based on batch size
|
463 |
+
n_batch = x_grid.shape[0]
|
464 |
+
local_rep = [n_batch] + [1] * (self.local_mask.ndim - 1)
|
465 |
+
global_rep = [n_batch] + [1] * (self.global_mask.ndim - 1)
|
466 |
+
|
467 |
+
if self._shifted:
|
468 |
+
attn_mask = {
|
469 |
+
True: self.local_mask.repeat(local_rep),
|
470 |
+
False: self.global_mask.repeat(global_rep),
|
471 |
+
}
|
472 |
+
else:
|
473 |
+
attn_mask = {True: None, False: None}
|
474 |
+
|
475 |
+
return torch.cat((lt, x_patched), axis=1), attn_mask
|
476 |
+
|
477 |
+
|
478 |
+
class LocalGlobalLocalBlock(nn.Module):
|
479 |
+
"""
|
480 |
+
Applies alternating block and grid attention. Given a parameter n_blocks,
|
481 |
+
the entire module contains 2*n_blocks+1 transformer blocks. The first,
|
482 |
+
third, ..., last apply local (block) attention. The second, fourth, ...
|
483 |
+
global (grid) attention.
|
484 |
+
|
485 |
+
This is heavily inspired by
|
486 |
+
Tu et al. "MaxViT: Multi-Axis Vision Transformer"
|
487 |
+
(https://arxiv.org/abs/2204.01697).
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __init__(
|
491 |
+
self,
|
492 |
+
features: int,
|
493 |
+
mlp_multiplier: int,
|
494 |
+
n_heads: int,
|
495 |
+
dropout: float,
|
496 |
+
n_blocks: int,
|
497 |
+
drop_path: float,
|
498 |
+
shifter: nn.Module | None = None,
|
499 |
+
checkpoint: list[int] | None = None,
|
500 |
+
) -> None:
|
501 |
+
"""
|
502 |
+
Args:
|
503 |
+
features: Number of features for inputs to the layer.
|
504 |
+
mlp_multiplier: Model uses features*mlp_multiplier hidden units.
|
505 |
+
n_heads: Number of attention heads. Should be a factor of features.
|
506 |
+
(I.e. the layer uses features // n_heads.)
|
507 |
+
dropout: Dropout.
|
508 |
+
drop_path: DropPath.
|
509 |
+
n_blocks: Number of local-global transformer pairs.
|
510 |
+
"""
|
511 |
+
super().__init__()
|
512 |
+
|
513 |
+
self.features = features
|
514 |
+
self.mlp_multiplier = mlp_multiplier
|
515 |
+
self.n_heads = n_heads
|
516 |
+
self.dropout = dropout
|
517 |
+
self.drop_path = drop_path
|
518 |
+
self.n_blocks = n_blocks
|
519 |
+
self._checkpoint = checkpoint or []
|
520 |
+
|
521 |
+
if not all(0 <= c < 2 * n_blocks + 1 for c in self._checkpoint):
|
522 |
+
raise ValueError(
|
523 |
+
"Checkpoints should be 0 <= i < 2*n_blocks+1. "
|
524 |
+
f"{self._checkpoint=}."
|
525 |
+
)
|
526 |
+
|
527 |
+
self.transformers = nn.ModuleList(
|
528 |
+
[
|
529 |
+
Transformer(
|
530 |
+
features=features,
|
531 |
+
mlp_multiplier=mlp_multiplier,
|
532 |
+
n_heads=n_heads,
|
533 |
+
dropout=dropout,
|
534 |
+
drop_path=drop_path,
|
535 |
+
)
|
536 |
+
for _ in range(2 * n_blocks + 1)
|
537 |
+
]
|
538 |
+
)
|
539 |
+
|
540 |
+
self.evaluator = [
|
541 |
+
self._checkpoint_wrapper
|
542 |
+
if i in self._checkpoint
|
543 |
+
else lambda m, x: m(x)
|
544 |
+
for i, _ in enumerate(self.transformers)
|
545 |
+
]
|
546 |
+
|
547 |
+
self.shifter = shifter or _Shift()
|
548 |
+
|
549 |
+
@staticmethod
|
550 |
+
def _checkpoint_wrapper(
|
551 |
+
model: nn.Module, data: tuple[Tensor, Tensor | None]
|
552 |
+
) -> Tensor:
|
553 |
+
return checkpoint(model, data, use_reentrant=False)
|
554 |
+
|
555 |
+
def forward(self, x: Tensor) -> Tensor:
|
556 |
+
"""
|
557 |
+
Args:
|
558 |
+
x: Tensor of shape::
|
559 |
+
|
560 |
+
[batch, global_sequence, local_sequence, features]
|
561 |
+
|
562 |
+
Returns:
|
563 |
+
Tensor: Tensor of shape::
|
564 |
+
|
565 |
+
[batch, global_sequence, local_sequence, features]
|
566 |
+
"""
|
567 |
+
if x.shape[-1] != self.features:
|
568 |
+
raise ValueError(
|
569 |
+
f"Expecting tensor with last dimension size {self.features}."
|
570 |
+
)
|
571 |
+
if x.ndim != 4:
|
572 |
+
raise ValueError(
|
573 |
+
f"Expecting tensor with exactly four dimensions. {x.shape=}."
|
574 |
+
)
|
575 |
+
|
576 |
+
self.shifter.reset()
|
577 |
+
local: bool = True
|
578 |
+
attn_mask = {True: None, False: None}
|
579 |
+
|
580 |
+
transformer_iter = zip(self.evaluator, self.transformers, strict=False)
|
581 |
+
|
582 |
+
# First local block
|
583 |
+
evaluator, transformer = next(transformer_iter)
|
584 |
+
x = evaluator(transformer, (x, attn_mask[local]))
|
585 |
+
|
586 |
+
for evaluator, transformer in transformer_iter:
|
587 |
+
local = not local
|
588 |
+
# We are making exactly 2*n_blocks transposes.
|
589 |
+
# So the output has the same shape as input.
|
590 |
+
x = x.transpose(1, 2)
|
591 |
+
|
592 |
+
x = evaluator(transformer, (x, attn_mask[local]))
|
593 |
+
|
594 |
+
if not local:
|
595 |
+
x, attn_mask = self.shifter(x)
|
596 |
+
|
597 |
+
return x
|
598 |
+
|
599 |
+
|
600 |
+
class PatchEmbed(nn.Module):
|
601 |
+
"""
|
602 |
+
Patch embedding via 2D convolution.
|
603 |
+
"""
|
604 |
+
|
605 |
+
def __init__(
|
606 |
+
self, patch_size: int | tuple[int, ...], channels: int, embed_dim: int
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
|
610 |
+
self.patch_size = patch_size
|
611 |
+
self.channels = channels
|
612 |
+
self.embed_dim = embed_dim
|
613 |
+
|
614 |
+
self.proj = nn.Conv2d(
|
615 |
+
channels,
|
616 |
+
embed_dim,
|
617 |
+
kernel_size=patch_size,
|
618 |
+
stride=patch_size,
|
619 |
+
bias=True,
|
620 |
+
)
|
621 |
+
|
622 |
+
def forward(self, x: Tensor) -> Tensor:
|
623 |
+
"""
|
624 |
+
Args:
|
625 |
+
x: Tensor of shape [batch, channels, lat, lon].
|
626 |
+
Returns:
|
627 |
+
Tensor: Tensor with shape
|
628 |
+
[batch, embed_dim, lat//patch_size, lon//patch_size]
|
629 |
+
"""
|
630 |
+
|
631 |
+
H, W = x.shape[-2:]
|
632 |
+
|
633 |
+
if W % self.patch_size[1] != 0:
|
634 |
+
raise ValueError(
|
635 |
+
f"Cannot do patch embedding for tensor of shape {x.size()}"
|
636 |
+
" with patch size {self.patch_size}. (Dimensions are BSCHW.)"
|
637 |
+
)
|
638 |
+
if H % self.patch_size[0] != 0:
|
639 |
+
raise ValueError(
|
640 |
+
f"Cannot do patch embedding for tensor of shape {x.size()}"
|
641 |
+
f" with patch size {self.patch_size}. (Dimensions are BSCHW.)"
|
642 |
+
)
|
643 |
+
|
644 |
+
x = self.proj(x)
|
645 |
+
|
646 |
+
return x
|
647 |
+
|
648 |
+
|
649 |
+
class PrithviWxCEncoderDecoder(nn.Module):
|
650 |
+
"""
|
651 |
+
Hiera-MaxViT encoder/decoder code.
|
652 |
+
"""
|
653 |
+
|
654 |
+
def __init__(
|
655 |
+
self,
|
656 |
+
embed_dim: int,
|
657 |
+
n_blocks: int,
|
658 |
+
mlp_multiplier: float,
|
659 |
+
n_heads: int,
|
660 |
+
dropout: float,
|
661 |
+
drop_path: float,
|
662 |
+
shifter: nn.Module | None = None,
|
663 |
+
transformer_cp: list[int] | None = None,
|
664 |
+
) -> None:
|
665 |
+
"""
|
666 |
+
Args:
|
667 |
+
embed_dim: Embedding dimension
|
668 |
+
n_blocks: Number of local-global transformer pairs.
|
669 |
+
mlp_multiplier: MLP multiplier for hidden features in feed forward
|
670 |
+
networks.
|
671 |
+
n_heads: Number of attention heads.
|
672 |
+
dropout: Dropout.
|
673 |
+
drop_path: DropPath.
|
674 |
+
"""
|
675 |
+
super().__init__()
|
676 |
+
|
677 |
+
self.embed_dim = embed_dim
|
678 |
+
self.n_blocks = n_blocks
|
679 |
+
self.mlp_multiplier = mlp_multiplier
|
680 |
+
self.n_heads = n_heads
|
681 |
+
self.dropout = dropout
|
682 |
+
self._transformer_cp = transformer_cp
|
683 |
+
|
684 |
+
self.lgl_block = LocalGlobalLocalBlock(
|
685 |
+
features=embed_dim,
|
686 |
+
mlp_multiplier=mlp_multiplier,
|
687 |
+
n_heads=n_heads,
|
688 |
+
dropout=dropout,
|
689 |
+
drop_path=drop_path,
|
690 |
+
n_blocks=n_blocks,
|
691 |
+
shifter=shifter,
|
692 |
+
checkpoint=transformer_cp,
|
693 |
+
)
|
694 |
+
|
695 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
696 |
+
"""
|
697 |
+
Args:
|
698 |
+
x: Tensor of shape
|
699 |
+
[batch, global sequence, local sequence, embed_dim]
|
700 |
+
Returns:
|
701 |
+
Tensor of shape
|
702 |
+
[batch, mask_unit_sequence, local_sequence, embed_dim].
|
703 |
+
Identical in shape to the input x.
|
704 |
+
"""
|
705 |
+
|
706 |
+
x = self.lgl_block(x)
|
707 |
+
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class PrithviWxC(nn.Module):
|
712 |
+
"""Encoder-decoder fusing Hiera with MaxViT. See
|
713 |
+
- Ryali et al. "Hiera: A Hierarchical Vision Transformer without the
|
714 |
+
Bells-and-Whistles" (https://arxiv.org/abs/2306.00989)
|
715 |
+
- Tu et al. "MaxViT: Multi-Axis Vision Transformer"
|
716 |
+
(https://arxiv.org/abs/2204.01697)
|
717 |
+
"""
|
718 |
+
|
719 |
+
def __init__(
|
720 |
+
self,
|
721 |
+
in_channels: int,
|
722 |
+
input_size_time: int,
|
723 |
+
in_channels_static: int,
|
724 |
+
input_scalers_mu: Tensor,
|
725 |
+
input_scalers_sigma: Tensor,
|
726 |
+
input_scalers_epsilon: float,
|
727 |
+
static_input_scalers_mu: Tensor,
|
728 |
+
static_input_scalers_sigma: Tensor,
|
729 |
+
static_input_scalers_epsilon: float,
|
730 |
+
output_scalers: Tensor,
|
731 |
+
n_lats_px: int,
|
732 |
+
n_lons_px: int,
|
733 |
+
patch_size_px: tuple[int],
|
734 |
+
mask_unit_size_px: tuple[int],
|
735 |
+
mask_ratio_inputs: float,
|
736 |
+
embed_dim: int,
|
737 |
+
n_blocks_encoder: int,
|
738 |
+
n_blocks_decoder: int,
|
739 |
+
mlp_multiplier: float,
|
740 |
+
n_heads: int,
|
741 |
+
dropout: float,
|
742 |
+
drop_path: float,
|
743 |
+
parameter_dropout: float,
|
744 |
+
residual: str,
|
745 |
+
masking_mode: str,
|
746 |
+
positional_encoding: str,
|
747 |
+
decoder_shifting: bool = False,
|
748 |
+
checkpoint_encoder: list[int] | None = None,
|
749 |
+
checkpoint_decoder: list[int] | None = None,
|
750 |
+
) -> None:
|
751 |
+
"""
|
752 |
+
Args:
|
753 |
+
in_channels: Number of input channels.
|
754 |
+
input_size_time: Number of timestamps in input.
|
755 |
+
in_channels_static: Number of input channels for static data.
|
756 |
+
input_scalers_mu: Tensor of size (in_channels,). Used to rescale
|
757 |
+
input.
|
758 |
+
input_scalers_sigma: Tensor of size (in_channels,). Used to rescale
|
759 |
+
input.
|
760 |
+
input_scalers_epsilon: Float. Used to rescale input.
|
761 |
+
static_input_scalers_mu: Tensor of size (in_channels_static). Used
|
762 |
+
to rescale static inputs.
|
763 |
+
static_input_scalers_sigma: Tensor of size (in_channels_static).
|
764 |
+
Used to rescale static inputs.
|
765 |
+
static_input_scalers_epsilon: Float. Used to rescale static inputs.
|
766 |
+
output_scalers: Tensor of shape (in_channels,). Used to rescale
|
767 |
+
output.
|
768 |
+
n_lats_px: Total latitudes in data. In pixels.
|
769 |
+
n_lons_px: Total longitudes in data. In pixels.
|
770 |
+
patch_size_px: Patch size for tokenization. In pixels lat/lon.
|
771 |
+
mask_unit_size_px: Size of each mask unit. In pixels lat/lon.
|
772 |
+
mask_ratio_inputs: Masking ratio for inputs. 0 to 1.
|
773 |
+
embed_dim: Embedding dimension
|
774 |
+
n_blocks_encoder: Number of local-global transformer pairs in
|
775 |
+
encoder.
|
776 |
+
n_blocks_decoder: Number of local-global transformer pairs in
|
777 |
+
decoder.
|
778 |
+
mlp_multiplier: MLP multiplier for hidden features in feed forward
|
779 |
+
networks.
|
780 |
+
n_heads: Number of attention heads.
|
781 |
+
dropout: Dropout.
|
782 |
+
drop_path: DropPath.
|
783 |
+
parameter_dropout: Dropout applied to parameters.
|
784 |
+
residual: Indicates whether and how model should work as residual
|
785 |
+
model. Accepted values are 'climate', 'temporal' and 'none'
|
786 |
+
positional_encoding: possible values are
|
787 |
+
['absolute' (default), 'fourier'].
|
788 |
+
'absolute' lat lon encoded in 3 dimensions using sine and
|
789 |
+
cosine
|
790 |
+
'fourier' lat/lon to be encoded using various frequencies
|
791 |
+
masking_mode: String ['local', 'global', 'both'] that controls the
|
792 |
+
type of masking used.
|
793 |
+
checkpoint_encoder: List of integers controlling if gradient
|
794 |
+
checkpointing is used on encoder.
|
795 |
+
Format: [] for no gradient checkpointing. [3, 7] for
|
796 |
+
checkpointing after 4th and 8th layer etc.
|
797 |
+
checkpoint_decoder: List of integers controlling if gradient
|
798 |
+
checkpointing is used on decoder.
|
799 |
+
Format: See `checkpoint_encoder`.
|
800 |
+
masking_mode: The type of masking to use
|
801 |
+
{'global', 'local', 'both'}
|
802 |
+
decoder_shifting: Whether to use swin shifting in the decoder.
|
803 |
+
"""
|
804 |
+
super().__init__()
|
805 |
+
|
806 |
+
self.in_channels = in_channels
|
807 |
+
self.input_size_time = input_size_time
|
808 |
+
self.in_channels_static = in_channels_static
|
809 |
+
self.n_lats_px = n_lats_px
|
810 |
+
self.n_lons_px = n_lons_px
|
811 |
+
self.patch_size_px = patch_size_px
|
812 |
+
self.mask_unit_size_px = mask_unit_size_px
|
813 |
+
self.mask_ratio_inputs = mask_ratio_inputs
|
814 |
+
self.embed_dim = embed_dim
|
815 |
+
self.n_blocks_encoder = n_blocks_encoder
|
816 |
+
self.n_blocks_decoder = n_blocks_decoder
|
817 |
+
self.mlp_multiplier = mlp_multiplier
|
818 |
+
self.n_heads = n_heads
|
819 |
+
self.dropout = dropout
|
820 |
+
self.drop_path = drop_path
|
821 |
+
self.residual = residual
|
822 |
+
self._decoder_shift = decoder_shifting
|
823 |
+
self.positional_encoding = positional_encoding
|
824 |
+
self._checkpoint_encoder = checkpoint_encoder
|
825 |
+
self._checkpoint_decoder = checkpoint_decoder
|
826 |
+
|
827 |
+
assert self.n_lats_px % self.mask_unit_size_px[0] == 0
|
828 |
+
assert self.n_lons_px % self.mask_unit_size_px[1] == 0
|
829 |
+
assert self.mask_unit_size_px[0] % self.patch_size_px[0] == 0
|
830 |
+
assert self.mask_unit_size_px[1] % self.patch_size_px[1] == 0
|
831 |
+
|
832 |
+
if self.patch_size_px[0] != self.patch_size_px[1]:
|
833 |
+
raise NotImplementedError(
|
834 |
+
"Current pixel shuffle symmetric patches."
|
835 |
+
)
|
836 |
+
|
837 |
+
self.local_shape_mu = (
|
838 |
+
self.mask_unit_size_px[0] // self.patch_size_px[0],
|
839 |
+
self.mask_unit_size_px[1] // self.patch_size_px[1],
|
840 |
+
)
|
841 |
+
self.global_shape_mu = (
|
842 |
+
self.n_lats_px // self.mask_unit_size_px[0],
|
843 |
+
self.n_lons_px // self.mask_unit_size_px[1],
|
844 |
+
)
|
845 |
+
|
846 |
+
assert input_scalers_mu.shape == (in_channels,)
|
847 |
+
assert input_scalers_sigma.shape == (in_channels,)
|
848 |
+
assert output_scalers.shape == (in_channels,)
|
849 |
+
|
850 |
+
if self.positional_encoding != "fourier":
|
851 |
+
assert static_input_scalers_mu.shape == (in_channels_static,)
|
852 |
+
assert static_input_scalers_sigma.shape == (in_channels_static,)
|
853 |
+
|
854 |
+
# Input shape [batch, time, parameter, lat, lon]
|
855 |
+
self.input_scalers_epsilon = input_scalers_epsilon
|
856 |
+
self.register_buffer(
|
857 |
+
"input_scalers_mu", input_scalers_mu.reshape(1, 1, -1, 1, 1)
|
858 |
+
)
|
859 |
+
self.register_buffer(
|
860 |
+
"input_scalers_sigma", input_scalers_sigma.reshape(1, 1, -1, 1, 1)
|
861 |
+
)
|
862 |
+
|
863 |
+
# Static inputs shape [batch, parameter, lat, lon]
|
864 |
+
self.static_input_scalers_epsilon = static_input_scalers_epsilon
|
865 |
+
self.register_buffer(
|
866 |
+
"static_input_scalers_mu",
|
867 |
+
static_input_scalers_mu.reshape(1, -1, 1, 1),
|
868 |
+
)
|
869 |
+
self.register_buffer(
|
870 |
+
"static_input_scalers_sigma",
|
871 |
+
static_input_scalers_sigma.reshape(1, -1, 1, 1),
|
872 |
+
)
|
873 |
+
|
874 |
+
# Output shape [batch, parameter, lat, lon]
|
875 |
+
self.register_buffer(
|
876 |
+
"output_scalers", output_scalers.reshape(1, -1, 1, 1)
|
877 |
+
)
|
878 |
+
|
879 |
+
self.parameter_dropout = nn.Dropout2d(p=parameter_dropout)
|
880 |
+
|
881 |
+
self.patch_embedding = PatchEmbed(
|
882 |
+
patch_size=patch_size_px,
|
883 |
+
channels=in_channels * input_size_time,
|
884 |
+
embed_dim=embed_dim,
|
885 |
+
)
|
886 |
+
|
887 |
+
if self.residual == "climate":
|
888 |
+
self.patch_embedding_static = PatchEmbed(
|
889 |
+
patch_size=patch_size_px,
|
890 |
+
channels=in_channels + in_channels_static,
|
891 |
+
embed_dim=embed_dim,
|
892 |
+
)
|
893 |
+
else:
|
894 |
+
self.patch_embedding_static = PatchEmbed(
|
895 |
+
patch_size=patch_size_px,
|
896 |
+
channels=in_channels_static,
|
897 |
+
embed_dim=embed_dim,
|
898 |
+
)
|
899 |
+
|
900 |
+
self.input_time_embedding = nn.Linear(1, embed_dim // 4, bias=True)
|
901 |
+
self.lead_time_embedding = nn.Linear(1, embed_dim // 4, bias=True)
|
902 |
+
|
903 |
+
self.mask_token = nn.Parameter(torch.randn(1, 1, 1, self.embed_dim))
|
904 |
+
self._nglobal_mu = np.prod(self.global_shape_mu)
|
905 |
+
self._global_idx = torch.arange(self._nglobal_mu)
|
906 |
+
|
907 |
+
self._nlocal_mu = np.prod(self.local_shape_mu)
|
908 |
+
self._local_idx = torch.arange(self._nlocal_mu)
|
909 |
+
|
910 |
+
self.encoder = PrithviWxCEncoderDecoder(
|
911 |
+
embed_dim=embed_dim,
|
912 |
+
n_blocks=n_blocks_encoder,
|
913 |
+
mlp_multiplier=mlp_multiplier,
|
914 |
+
n_heads=n_heads,
|
915 |
+
dropout=dropout,
|
916 |
+
drop_path=drop_path,
|
917 |
+
transformer_cp=checkpoint_encoder,
|
918 |
+
)
|
919 |
+
|
920 |
+
if n_blocks_decoder != 0:
|
921 |
+
if self._decoder_shift:
|
922 |
+
self.decoder_shifter = d_shifter = SWINShift(
|
923 |
+
self.mask_unit_size_px,
|
924 |
+
self.global_shape_mu,
|
925 |
+
self.local_shape_mu,
|
926 |
+
self.patch_size_px,
|
927 |
+
n_context_tokens=0,
|
928 |
+
)
|
929 |
+
else:
|
930 |
+
self.decoder_shifter = d_shifter = None
|
931 |
+
|
932 |
+
self.decoder = PrithviWxCEncoderDecoder(
|
933 |
+
embed_dim=embed_dim,
|
934 |
+
n_blocks=n_blocks_decoder,
|
935 |
+
mlp_multiplier=mlp_multiplier,
|
936 |
+
n_heads=n_heads,
|
937 |
+
dropout=dropout,
|
938 |
+
drop_path=0.0,
|
939 |
+
shifter=d_shifter,
|
940 |
+
transformer_cp=checkpoint_decoder,
|
941 |
+
)
|
942 |
+
|
943 |
+
self.unembed = nn.Linear(
|
944 |
+
self.embed_dim,
|
945 |
+
self.in_channels
|
946 |
+
* self.patch_size_px[0]
|
947 |
+
* self.patch_size_px[1],
|
948 |
+
bias=True,
|
949 |
+
)
|
950 |
+
|
951 |
+
self.masking_mode = masking_mode.lower()
|
952 |
+
match self.masking_mode:
|
953 |
+
case "local":
|
954 |
+
self.generate_mask = self._gen_mask_local
|
955 |
+
case "global":
|
956 |
+
self.generate_mask = self._gen_mask_global
|
957 |
+
case "both":
|
958 |
+
self._mask_both_local: bool = True
|
959 |
+
self.generate_mask = self._gen_mask_both
|
960 |
+
case _:
|
961 |
+
raise ValueError(
|
962 |
+
f"Masking mode '{masking_mode}' not supported"
|
963 |
+
)
|
964 |
+
|
965 |
+
def swap_masking(self) -> None:
|
966 |
+
self._mask_both_local = not self._mask_both_local
|
967 |
+
|
968 |
+
@cached_property
|
969 |
+
def n_masked_global(self):
|
970 |
+
return int(self.mask_ratio_inputs * np.prod(self.global_shape_mu))
|
971 |
+
|
972 |
+
@cached_property
|
973 |
+
def n_masked_local(self):
|
974 |
+
return int(self.mask_ratio_inputs * np.prod(self.local_shape_mu))
|
975 |
+
|
976 |
+
@staticmethod
|
977 |
+
def _shuffle_along_axis(a, axis):
|
978 |
+
idx = torch.argsort(input=torch.rand(*a.shape), dim=axis)
|
979 |
+
return torch.gather(a, dim=axis, index=idx)
|
980 |
+
|
981 |
+
def _gen_mask_local(self, sizes: tuple[int]) -> tuple[Tensor]:
|
982 |
+
"""
|
983 |
+
Args:
|
984 |
+
batch_size: Number of elements in batch
|
985 |
+
Returns:
|
986 |
+
Tuple of torch tensors. [indices masked, indices unmasked].
|
987 |
+
Each of these is a tensor of shape (batch, global sequene)
|
988 |
+
"""
|
989 |
+
# Identify which indices (values) should be masked
|
990 |
+
|
991 |
+
maskable_indices = self._local_idx.view(1, -1).expand(*sizes[:2], -1)
|
992 |
+
|
993 |
+
maskable_indices = self._shuffle_along_axis(maskable_indices, 2)
|
994 |
+
|
995 |
+
indices_masked = maskable_indices[:, :, : self.n_masked_local]
|
996 |
+
indices_unmasked = maskable_indices[:, :, self.n_masked_local :]
|
997 |
+
|
998 |
+
return indices_masked, indices_unmasked
|
999 |
+
|
1000 |
+
def _gen_mask_global(self, sizes: tuple[int]) -> tuple[Tensor]:
|
1001 |
+
"""
|
1002 |
+
Args:
|
1003 |
+
batch_size: Number of elements in batch
|
1004 |
+
Returns:
|
1005 |
+
Tuple of torch tensors. [indices masked, indices unmasked].
|
1006 |
+
Each of these is a tensor of shape (batch, global sequene)
|
1007 |
+
"""
|
1008 |
+
# Identify which indices (values) should be masked
|
1009 |
+
|
1010 |
+
maskable_indices = self._global_idx.view(1, -1).expand(*sizes[:1], -1)
|
1011 |
+
|
1012 |
+
maskable_indices = self._shuffle_along_axis(maskable_indices, 1)
|
1013 |
+
|
1014 |
+
indices_masked = maskable_indices[:, : self.n_masked_global]
|
1015 |
+
indices_unmasked = maskable_indices[:, self.n_masked_global :]
|
1016 |
+
|
1017 |
+
return indices_masked, indices_unmasked
|
1018 |
+
|
1019 |
+
def _gen_mask_both(self, sizes: tuple[int]) -> tuple[Tensor]:
|
1020 |
+
if self._mask_both_local:
|
1021 |
+
return self._gen_mask_local(sizes)
|
1022 |
+
else:
|
1023 |
+
return self._gen_mask_global(sizes)
|
1024 |
+
|
1025 |
+
@staticmethod
|
1026 |
+
def reconstruct_batch(
|
1027 |
+
idx_masked: Tensor,
|
1028 |
+
idx_unmasked: Tensor,
|
1029 |
+
data_masked: Tensor,
|
1030 |
+
data_unmasked: Tensor,
|
1031 |
+
) -> Tensor:
|
1032 |
+
"""Reconstructs a tensor along the mask unit dimension. Batched
|
1033 |
+
version.
|
1034 |
+
|
1035 |
+
Args:
|
1036 |
+
idx_masked: Tensor of shape `batch, mask unit sequence`.
|
1037 |
+
idx_unmasked: Tensor of shape `batch, mask unit sequence`.
|
1038 |
+
data_masked: Tensor of shape `batch, mask unit sequence, ...`.
|
1039 |
+
Should have same size along mask unit sequence dimension as
|
1040 |
+
idx_masked. Dimensions beyond the first two, marked here as ...
|
1041 |
+
will typically be `local_sequence, channel` or
|
1042 |
+
`channel, lat, lon`. These dimensions should agree with
|
1043 |
+
data_unmasked.
|
1044 |
+
data_unmasked: Tensor of shape `batch, mask unit sequence, ...`.
|
1045 |
+
Should have same size along mask unit sequence dimension as
|
1046 |
+
idx_unmasked. Dimensions beyond the first two, marked here as
|
1047 |
+
... will typically be `local_sequence, channel` or `channel,
|
1048 |
+
lat, lon`. These dimensions should agree with data_masked.
|
1049 |
+
Returns:
|
1050 |
+
Tensor: Tensor of same shape as inputs data_masked and
|
1051 |
+
data_unmasked. I.e. `batch, mask unit sequence, ...`. Index for
|
1052 |
+
the total data composed of the masked and the unmasked part.
|
1053 |
+
"""
|
1054 |
+
dim: int = idx_masked.ndim
|
1055 |
+
|
1056 |
+
idx_total = torch.argsort(
|
1057 |
+
torch.cat([idx_masked, idx_unmasked], dim=-1), dim=-1
|
1058 |
+
)
|
1059 |
+
idx_total = idx_total.view(
|
1060 |
+
*idx_total.shape, *[1] * (data_unmasked.ndim - dim)
|
1061 |
+
)
|
1062 |
+
idx_total = idx_total.expand(
|
1063 |
+
*idx_total.shape[:dim], *data_unmasked.shape[dim:]
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
data = torch.cat([data_masked, data_unmasked], dim=dim - 1)
|
1067 |
+
data = torch.gather(data, dim=dim - 1, index=idx_total)
|
1068 |
+
|
1069 |
+
return data, idx_total
|
1070 |
+
|
1071 |
+
def fourier_pos_encoding(self, x_static: Tensor) -> Tensor:
|
1072 |
+
"""
|
1073 |
+
Args
|
1074 |
+
x_static: B x C x H x W. first two channels are lat, and lon
|
1075 |
+
Returns
|
1076 |
+
Tensor: Tensor of shape B x E x H x W where E is the embedding
|
1077 |
+
dimension.
|
1078 |
+
"""
|
1079 |
+
|
1080 |
+
# B x C x H x W -> B x 1 x H/P x W/P
|
1081 |
+
latitudes_patch = F.avg_pool2d(
|
1082 |
+
x_static[:, [0]],
|
1083 |
+
kernel_size=self.patch_size_px,
|
1084 |
+
stride=self.patch_size_px,
|
1085 |
+
)
|
1086 |
+
longitudes_patch = F.avg_pool2d(
|
1087 |
+
x_static[:, [1]],
|
1088 |
+
kernel_size=self.patch_size_px,
|
1089 |
+
stride=self.patch_size_px,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
modes = (
|
1093 |
+
torch.arange(self.embed_dim // 4, device=x_static.device).view(
|
1094 |
+
1, -1, 1, 1
|
1095 |
+
)
|
1096 |
+
+ 1.0
|
1097 |
+
)
|
1098 |
+
pos_encoding = torch.cat(
|
1099 |
+
(
|
1100 |
+
torch.sin(latitudes_patch * modes),
|
1101 |
+
torch.sin(longitudes_patch * modes),
|
1102 |
+
torch.cos(latitudes_patch * modes),
|
1103 |
+
torch.cos(longitudes_patch * modes),
|
1104 |
+
),
|
1105 |
+
axis=1,
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
return pos_encoding # B x E x H/P x W/P
|
1109 |
+
|
1110 |
+
def time_encoding(self, input_time, lead_time):
|
1111 |
+
"""
|
1112 |
+
Args:
|
1113 |
+
input_time: Tensor of shape [batch].
|
1114 |
+
lead_time: Tensor of shape [batch].
|
1115 |
+
Returns:
|
1116 |
+
Tensor: Tensor of shape [batch, embed_dim, 1, 1]
|
1117 |
+
"""
|
1118 |
+
input_time = self.input_time_embedding(input_time.view(-1, 1, 1, 1))
|
1119 |
+
lead_time = self.lead_time_embedding(lead_time.view(-1, 1, 1, 1))
|
1120 |
+
|
1121 |
+
time_encoding = torch.cat(
|
1122 |
+
(
|
1123 |
+
torch.cos(input_time),
|
1124 |
+
torch.cos(lead_time),
|
1125 |
+
torch.sin(input_time),
|
1126 |
+
torch.sin(lead_time),
|
1127 |
+
),
|
1128 |
+
axis=3,
|
1129 |
+
)
|
1130 |
+
return time_encoding
|
1131 |
+
|
1132 |
+
def to_patching(self, x: Tensor) -> Tensor:
|
1133 |
+
"""Transform data from lat/lon space to two axis patching
|
1134 |
+
|
1135 |
+
Args: ->
|
1136 |
+
x: Tesnor in lat/lon space (N, C, Nlat//P_0, Nlon//P_1)
|
1137 |
+
|
1138 |
+
Returns:
|
1139 |
+
Tensor in patch space (N, G, L, C)
|
1140 |
+
"""
|
1141 |
+
n_batch = x.shape[0]
|
1142 |
+
|
1143 |
+
x = x.view(
|
1144 |
+
n_batch,
|
1145 |
+
-1,
|
1146 |
+
self.global_shape_mu[0],
|
1147 |
+
self.local_shape_mu[0],
|
1148 |
+
self.global_shape_mu[1],
|
1149 |
+
self.local_shape_mu[1],
|
1150 |
+
)
|
1151 |
+
x = x.permute(0, 2, 4, 3, 5, 1).contiguous()
|
1152 |
+
|
1153 |
+
s = x.shape
|
1154 |
+
return x.view(n_batch, s[1] * s[2], s[3] * s[4], -1)
|
1155 |
+
|
1156 |
+
def from_patching(self, x: Tensor) -> Tensor:
|
1157 |
+
"""Transform data from two axis patching to lat/lon space
|
1158 |
+
|
1159 |
+
Args:
|
1160 |
+
x: Tensor in patch space with shape (N, G, L, C*P_0*P_1)
|
1161 |
+
|
1162 |
+
Returns:
|
1163 |
+
Tensor: Tensor in lat/lon space
|
1164 |
+
(N, C*P_0*P_1, Nlat//P_0, Nlon // P_1)
|
1165 |
+
"""
|
1166 |
+
n_batch = x.shape[0]
|
1167 |
+
|
1168 |
+
x = x.view(
|
1169 |
+
n_batch,
|
1170 |
+
self.global_shape_mu[0],
|
1171 |
+
self.global_shape_mu[1],
|
1172 |
+
self.local_shape_mu[0],
|
1173 |
+
self.local_shape_mu[1],
|
1174 |
+
-1,
|
1175 |
+
)
|
1176 |
+
x = x.permute(0, 5, 1, 3, 2, 4).contiguous()
|
1177 |
+
|
1178 |
+
s = x.shape
|
1179 |
+
return x.view(n_batch, -1, s[2] * s[3], s[4] * s[5])
|
1180 |
+
|
1181 |
+
def forward(self, batch: dict[str, torch.Tensor]) -> torch.Tensor:
|
1182 |
+
"""
|
1183 |
+
Args:
|
1184 |
+
batch: Dictionary the following keys::
|
1185 |
+
|
1186 |
+
'x': Tensor of shape [batch, time, parameter, lat, lon]
|
1187 |
+
'y': Tensor of shape [batch, parameter, lat, lon]
|
1188 |
+
'static': Tensor of shape [batch, channel_static, lat, lon]
|
1189 |
+
'climate': Optional tensor of shape [batch, parameter, lat, lon]
|
1190 |
+
'input_time': Tensor of shape [batch]. Or none.
|
1191 |
+
'lead_time': Tensor of shape [batch]. Or none.
|
1192 |
+
|
1193 |
+
Returns:
|
1194 |
+
Tensor: Tensor of shape [batch, parameter, lat, lon].
|
1195 |
+
""" # noqa: E501
|
1196 |
+
x_rescaled = (batch["x"] - self.input_scalers_mu) / (
|
1197 |
+
self.input_scalers_sigma + self.input_scalers_epsilon
|
1198 |
+
)
|
1199 |
+
batch_size = x_rescaled.shape[0]
|
1200 |
+
|
1201 |
+
if self.positional_encoding == "fourier":
|
1202 |
+
x_static_pos = self.fourier_pos_encoding(batch["static"])
|
1203 |
+
x_static = (
|
1204 |
+
batch["static"][:, 2:] - self.static_input_scalers_mu[:, 3:]
|
1205 |
+
) / (
|
1206 |
+
self.static_input_scalers_sigma[:, 3:]
|
1207 |
+
+ self.static_input_scalers_epsilon
|
1208 |
+
)
|
1209 |
+
else:
|
1210 |
+
x_static = (batch["static"] - self.static_input_scalers_mu) / (
|
1211 |
+
self.static_input_scalers_sigma
|
1212 |
+
+ self.static_input_scalers_epsilon
|
1213 |
+
)
|
1214 |
+
|
1215 |
+
if self.residual == "temporal":
|
1216 |
+
# We create a residual of same shape as y
|
1217 |
+
index = torch.where(
|
1218 |
+
batch["lead_time"] > 0, batch["x"].shape[1] - 1, 0
|
1219 |
+
)
|
1220 |
+
index = index.view(-1, 1, 1, 1, 1)
|
1221 |
+
index = index.expand(batch_size, 1, *batch["x"].shape[2:])
|
1222 |
+
x_hat = torch.gather(batch["x"], dim=1, index=index)
|
1223 |
+
x_hat = x_hat.squeeze(1)
|
1224 |
+
elif self.residual == "climate":
|
1225 |
+
climate_scaled = (
|
1226 |
+
batch["climate"] - self.input_scalers_mu.view(1, -1, 1, 1)
|
1227 |
+
) / (
|
1228 |
+
self.input_scalers_sigma.view(1, -1, 1, 1)
|
1229 |
+
+ self.input_scalers_epsilon
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
# [batch, time, parameter, lat, lon]
|
1233 |
+
# -> [batch, time x parameter, lat, lon]
|
1234 |
+
x_rescaled = x_rescaled.flatten(1, 2)
|
1235 |
+
# Parameter dropout
|
1236 |
+
x_rescaled = self.parameter_dropout(x_rescaled)
|
1237 |
+
|
1238 |
+
x_embedded = self.patch_embedding(x_rescaled)
|
1239 |
+
|
1240 |
+
if self.residual == "climate":
|
1241 |
+
static_embedded = self.patch_embedding_static(
|
1242 |
+
torch.cat((x_static, climate_scaled), dim=1)
|
1243 |
+
)
|
1244 |
+
else:
|
1245 |
+
static_embedded = self.patch_embedding_static(x_static)
|
1246 |
+
|
1247 |
+
if self.positional_encoding == "fourier":
|
1248 |
+
static_embedded += x_static_pos
|
1249 |
+
|
1250 |
+
x_embedded = self.to_patching(x_embedded)
|
1251 |
+
static_embedded = self.to_patching(static_embedded)
|
1252 |
+
|
1253 |
+
time_encoding = self.time_encoding(
|
1254 |
+
batch["input_time"], batch["lead_time"]
|
1255 |
+
)
|
1256 |
+
|
1257 |
+
tokens = x_embedded + static_embedded + time_encoding
|
1258 |
+
|
1259 |
+
# Now we generate masks based on masking_mode
|
1260 |
+
indices_masked, indices_unmasked = self.generate_mask(
|
1261 |
+
(batch_size, self._nglobal_mu)
|
1262 |
+
)
|
1263 |
+
indices_masked = indices_masked.to(device=tokens.device)
|
1264 |
+
indices_unmasked = indices_unmasked.to(device=tokens.device)
|
1265 |
+
maskdim: int = indices_masked.ndim
|
1266 |
+
|
1267 |
+
# Unmasking
|
1268 |
+
unmask_view = (*indices_unmasked.shape, *[1] * (tokens.ndim - maskdim))
|
1269 |
+
unmasked = torch.gather(
|
1270 |
+
tokens,
|
1271 |
+
dim=maskdim - 1,
|
1272 |
+
index=indices_unmasked.view(*unmask_view).expand(
|
1273 |
+
*indices_unmasked.shape, *tokens.shape[maskdim:]
|
1274 |
+
),
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
# Encoder
|
1278 |
+
x_encoded = self.encoder(unmasked)
|
1279 |
+
|
1280 |
+
# Generate and position encode the mask tokens
|
1281 |
+
# [1, 1, 1, embed_dim]
|
1282 |
+
# -> [batch, global_seq_masked, local seq, embed_dim]
|
1283 |
+
mask_view = (*indices_masked.shape, *[1] * (tokens.ndim - maskdim))
|
1284 |
+
masking = self.mask_token.repeat(*static_embedded.shape[:3], 1)
|
1285 |
+
masked = masking + static_embedded
|
1286 |
+
masked = torch.gather(
|
1287 |
+
masked,
|
1288 |
+
dim=maskdim - 1,
|
1289 |
+
index=indices_masked.view(*mask_view).expand(
|
1290 |
+
*indices_masked.shape, *tokens.shape[maskdim:]
|
1291 |
+
),
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
recon, _ = self.reconstruct_batch(
|
1295 |
+
indices_masked, indices_unmasked, masked, x_encoded
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
x_decoded = self.decoder(recon)
|
1299 |
+
|
1300 |
+
# Output: [batch, global sequence, local sequence,
|
1301 |
+
# in_channels * patch_size[0] * patch_size[1]]
|
1302 |
+
x_unembed = self.unembed(x_decoded)
|
1303 |
+
|
1304 |
+
# Reshape to [batch, global_lat, global_lon, local_lat, local_lon,
|
1305 |
+
# in_channels * patch_size[0] * patch_size[1]]
|
1306 |
+
x_out = self.from_patching(x_unembed)
|
1307 |
+
|
1308 |
+
# Pixel shuffle to [batch, in_channels, lat, lon]
|
1309 |
+
x_out = F.pixel_shuffle(x_out, self.patch_size_px[0])
|
1310 |
+
|
1311 |
+
if self.residual == "temporal":
|
1312 |
+
x_out = self.output_scalers * x_out + x_hat
|
1313 |
+
elif self.residual == "climate":
|
1314 |
+
x_out = self.output_scalers * x_out + batch["climate"]
|
1315 |
+
elif self.residual == "none":
|
1316 |
+
x_out = (
|
1317 |
+
self.output_scalers * x_out
|
1318 |
+
+ self.input_scalers_mu.reshape(1, -1, 1, 1)
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
return x_out
|
PrithviWxC/rollout.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor, nn
|
3 |
+
|
4 |
+
|
5 |
+
def rollout_iter(
|
6 |
+
nsteps: int,
|
7 |
+
model: nn.Module,
|
8 |
+
batch: dict[str, Tensor | int | float],
|
9 |
+
) -> Tensor:
|
10 |
+
"""A helper function for performing autoregressive rollout.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
nsteps (int): The number of rollout steps to take
|
14 |
+
model (nn.Module): A model.
|
15 |
+
batch (dict): A data dictionary common to the Prithvi models.
|
16 |
+
|
17 |
+
Raises:
|
18 |
+
ValueError: If the number of steps isn't positive.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Tensor: the output of the model after nsteps autoregressive iterations.
|
22 |
+
"""
|
23 |
+
if nsteps < 1:
|
24 |
+
raise ValueError("'nsteps' shouold be a positive int.")
|
25 |
+
|
26 |
+
xlast = batch["x"][:, 1]
|
27 |
+
batch["lead_time"] = batch["lead_time"][..., 0]
|
28 |
+
|
29 |
+
# Save the masking ratio to be restored later
|
30 |
+
mask_ratio_tmp = model.mask_ratio_inputs
|
31 |
+
|
32 |
+
for step in range(nsteps):
|
33 |
+
# After first step, turn off masking
|
34 |
+
if step > 0:
|
35 |
+
model.mask_ratio_inputs = 0.0
|
36 |
+
|
37 |
+
batch["static"] = batch["statics"][:, step]
|
38 |
+
batch["climate"] = batch["climates"][:, step]
|
39 |
+
batch["y"] = batch["ys"][:, step]
|
40 |
+
|
41 |
+
out = model(batch)
|
42 |
+
|
43 |
+
batch["x"] = torch.cat((xlast[:, None], out[:, None]), dim=1)
|
44 |
+
xlast = out
|
45 |
+
|
46 |
+
# Restore the masking ratio
|
47 |
+
model.mask_ratio_inputs = mask_ratio_tmp
|
48 |
+
|
49 |
+
return xlast
|