Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,471 Bytes
6b799b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import json
import math
import pickle
import sys
import time
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Mapping
import cv2
import matplotlib.cm as cm
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import tqdm
from PIL import Image
from pytorch_lightning.loggers import TensorBoardLogger
from sklearn.decomposition import PCA
from torch.nn.parameter import Parameter
from torch.utils.data import ConcatDataset, DataLoader, Subset
from torchvision.transforms import functional
class _LoRA_qkv(nn.Module):
"""
In Dinov2 it is implemented as
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
"""
def __init__(
self,
qkv: nn.Module,
linear_a_q: nn.Module,
linear_b_q: nn.Module,
linear_a_v: nn.Module,
linear_b_v: nn.Module,
):
super().__init__()
self.qkv = qkv
self.linear_a_q = linear_a_q
self.linear_b_q = linear_b_q
self.linear_a_v = linear_a_v
self.linear_b_v = linear_b_v
self.dim = qkv.in_features
self.w_identity = torch.eye(qkv.in_features)
def forward(self, x):
qkv = self.qkv(x) # B,N,3*org_C
new_q = self.linear_b_q(self.linear_a_q(x))
new_v = self.linear_b_v(self.linear_a_v(x))
qkv[:, :, : self.dim] += new_q
qkv[:, :, -self.dim:] += new_v
return qkv
def sigmoid(tensor, temp=1.0):
""" temperature controlled sigmoid
takes as input a torch tensor (tensor) and passes it through a sigmoid, controlled by temperature: temp
"""
exponent = -tensor / temp
# clamp the input tensor for stability
exponent = torch.clamp(exponent, min=-50, max=50)
y = 1.0 / (1.0 + torch.exp(exponent))
return y
def interpolate_features(descriptors, pts, h, w, normalize=True, patch_size=14, stride=14):
last_coord_h = ( (h - patch_size) // stride ) * stride + (patch_size / 2)
last_coord_w = ( (w - patch_size) // stride ) * stride + (patch_size / 2)
ah = 2 / (last_coord_h - (patch_size / 2))
aw = 2 / (last_coord_w - (patch_size / 2))
bh = 1 - last_coord_h * 2 / ( last_coord_h - ( patch_size / 2 ))
bw = 1 - last_coord_w * 2 / ( last_coord_w - ( patch_size / 2 ))
a = torch.tensor([[aw, ah]]).to(pts).float()
b = torch.tensor([[bw, bh]]).to(pts).float()
keypoints = a * pts + b
# Expand dimensions for grid sampling
keypoints = keypoints.unsqueeze(-3) # Shape becomes [batch_size, 1, num_keypoints, 2]
# Interpolate using bilinear sampling
interpolated_features = F.grid_sample(descriptors, keypoints, align_corners=True, padding_mode='border')
# interpolated_features will have shape [batch_size, channels, 1, num_keypoints]
interpolated_features = interpolated_features.squeeze(-2)
return F.normalize(interpolated_features, dim=1) if normalize else interpolated_features
class FinetuneDINO(pl.LightningModule):
def __init__(self, r, backbone_size, reg=False, datasets=None):
super().__init__()
assert r > 0
self.backbone_size = backbone_size
self.backbone_archs = {
"small": "vits14",
"base": "vitb14",
"large": "vitl14",
"giant": "vitg14",
}
self.embedding_dims = {
"small": 384,
"base": 768,
"large": 1024,
"giant": 1536,
}
self.backbone_arch = self.backbone_archs[self.backbone_size]
if reg:
self.backbone_arch = f"{self.backbone_arch}_reg"
self.embedding_dim = self.embedding_dims[self.backbone_size]
self.backbone_name = f"dinov2_{self.backbone_arch}"
dinov2 = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=self.backbone_name)
self.datasets = datasets
self.lora_layer = list(range(len(dinov2.blocks))) # Only apply lora to the image encoder by default
# create for storage, then we can init them or load weights
self.w_As = [] # These are linear layers
self.w_Bs = []
# freeze first
for param in dinov2.parameters():
param.requires_grad = False
# finetune the last 4 blocks
for t_layer_i, blk in enumerate(dinov2.blocks[-4:]):
# If we only want few lora layer instead of all
if t_layer_i not in self.lora_layer:
continue
w_qkv_linear = blk.attn.qkv
self.dim = w_qkv_linear.in_features
w_a_linear_q = nn.Linear(self.dim, r, bias=False)
w_b_linear_q = nn.Linear(r, self.dim, bias=False)
w_a_linear_v = nn.Linear(self.dim, r, bias=False)
w_b_linear_v = nn.Linear(r, self.dim, bias=False)
self.w_As.append(w_a_linear_q)
self.w_Bs.append(w_b_linear_q)
self.w_As.append(w_a_linear_v)
self.w_Bs.append(w_b_linear_v)
blk.attn.qkv = _LoRA_qkv(
w_qkv_linear,
w_a_linear_q,
w_b_linear_q,
w_a_linear_v,
w_b_linear_v,
)
self.reset_parameters()
self.dinov2 = dinov2
self.downsample_factor = 8
self.refine_conv = nn.Conv2d(self.embedding_dim, self.embedding_dim, kernel_size=3, stride=1, padding=1)
self.thresh3d_pos = 5e-3
self.thres3d_neg = 0.1
self.patch_size = 14
self.target_res = 640
self.input_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
def reset_parameters(self) -> None:
for w_A in self.w_As:
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs:
nn.init.zeros_(w_B.weight)
def on_save_checkpoint(self, checkpoint: Dict[str, Any]):
num_layer = len(self.w_As) # actually, it is half
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)}
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)}
checkpoint['state_dict'] = {
'refine_conv': self.refine_conv.state_dict(),
}
checkpoint.update(a_tensors)
checkpoint.update(b_tensors)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
pass
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
# print(checkpoint.keys())
self.refine_conv.load_state_dict(checkpoint['state_dict']['refine_conv'])
for i, w_A_linear in enumerate(self.w_As):
saved_key = f"w_a_{i:03d}"
saved_tensor = checkpoint[saved_key]
w_A_linear.weight = Parameter(saved_tensor)
for i, w_B_linear in enumerate(self.w_Bs):
saved_key = f"w_b_{i:03d}"
saved_tensor = checkpoint[saved_key]
w_B_linear.weight = Parameter(saved_tensor)
self.loaded = True
def get_nearest(self, query, database):
dist = torch.cdist(query, database)
min_dist, min_idx = torch.min(dist, -1)
return min_dist, min_idx
def get_feature(self, rgbs, pts, normalize=True):
tgt_size = (int(rgbs.shape[-2] * self.target_res / rgbs.shape[-1]), self.target_res)
if rgbs.shape[-2] > rgbs.shape[-1]:
tgt_size = (self.target_res, int(rgbs.shape[-1] * self.target_res / rgbs.shape[-2]))
patch_h, patch_w = tgt_size[0] // self.downsample_factor, tgt_size[1] // self.downsample_factor
rgb_resized = functional.resize(rgbs, (patch_h * self.patch_size, patch_w * self.patch_size))
resize_factor = [(patch_w * self.patch_size) / rgbs.shape[-1], (patch_h * self.patch_size) / rgbs.shape[-2]]
pts = pts * torch.tensor(resize_factor).to(pts.device)
result = self.dinov2.forward_features(self.input_transform(rgb_resized))
feature = result['x_norm_patchtokens'].reshape(rgb_resized.shape[0], patch_h, patch_w, -1).permute(0, 3, 1, 2)
feature = self.refine_conv(feature)
feature = interpolate_features(feature, pts, h=patch_h * 14, w=patch_w * 14, normalize=False).permute(0, 2, 1)
if normalize:
feature = F.normalize(feature, p=2, dim=-1)
return feature
def get_feature_wo_kp(self, rgbs, normalize=True):
tgt_size = (int(rgbs.shape[-2] * self.target_res / rgbs.shape[-1]), self.target_res)
if rgbs.shape[-2] > rgbs.shape[-1]:
tgt_size = (self.target_res, int(rgbs.shape[-1] * self.target_res / rgbs.shape[-2]))
patch_h, patch_w = tgt_size[0] // self.downsample_factor, tgt_size[1] // self.downsample_factor
rgb_resized = functional.resize(rgbs, (patch_h * self.patch_size, patch_w * self.patch_size))
result = self.dinov2.forward_features(self.input_transform(rgb_resized))
feature = result['x_norm_patchtokens'].reshape(rgbs.shape[0], patch_h, patch_w, -1).permute(0, 3, 1, 2)
feature = self.refine_conv(feature)
feature = functional.resize(feature, (rgbs.shape[-2], rgbs.shape[-1])).permute(0, 2, 3, 1)
if normalize:
feature = F.normalize(feature, p=2, dim=-1)
return feature
def training_step(self, batch, batch_idx):
# print(batch['obj_name_1'])
rgb_1, pts2d_1, pts3d_1 = batch['rgb_1'], batch['pts2d_1'], batch['pts3d_1']
rgb_2, pts2d_2, pts3d_2 = batch['rgb_2'], batch['pts2d_2'], batch['pts3d_2']
desc_1 = self.get_feature(rgb_1, pts2d_1, normalize=True)
desc_2 = self.get_feature(rgb_2, pts2d_2, normalize=True)
kp3d_dist = torch.cdist(pts3d_1, pts3d_2) # B x S x T
sim = torch.bmm(desc_1, desc_2.transpose(-1, -2)) # B x S x T
pos_idxs = torch.nonzero(kp3d_dist < self.thresh3d_pos, as_tuple=False)
pos_sim = sim[pos_idxs[:, 0], pos_idxs[:, 1], pos_idxs[:, 2]]
rpos = sigmoid(pos_sim - 1., temp=0.01) + 1 # si = 1 # pos
neg_mask = kp3d_dist[pos_idxs[:, 0], pos_idxs[:, 1]] > self.thres3d_neg # pos x T
rall = rpos + torch.sum(sigmoid(sim[pos_idxs[:, 0], pos_idxs[:, 1]] - 1., temp=0.01) * neg_mask.float(), -1) # pos
ap1 = rpos / rall
# change teh order
rpos = sigmoid(1. - pos_sim, temp=0.01) + 1 # si = 1 # pos
neg_mask = kp3d_dist[pos_idxs[:, 0], pos_idxs[:, 1]] > self.thres3d_neg # pos x T
rall = rpos + torch.sum(sigmoid(sim[pos_idxs[:, 0], pos_idxs[:, 1]] - pos_sim[:, None].repeat(1, sim.shape[-1]), temp=0.01) * neg_mask.float(), -1) # pos
ap2 = rpos / rall
ap = (ap1 + ap2) / 2
loss = torch.mean(1. - ap)
self.log('loss', loss, prog_bar=True)
return loss
def configure_optimizers(self):
return torch.optim.AdamW([layer.weight for layer in self.w_As]
+ [layer.weight for layer in self.w_Bs]
+ list(self.refine_conv.parameters()), lr=1e-5, weight_decay=1e-4) |