import gradio as gr import matplotlib.pyplot as plt import numpy as np import os import requests import spaces import torch import torchvision.transforms as T import types import albumentations as A import torch.nn.functional as F from PIL import Image from tqdm import tqdm cmap = plt.get_cmap("tab20") imagenet_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) def get_bg_mask(image): # detect background based on the four edges image = np.array(image) if np.all(image[:, 0] == image[0, 0]) and np.all(image[:, -1] == image[0, -1]) \ and np.all(image[0, :] == image[0, 0]) and np.all(image[-1, :] == image[-1, 0]) \ and np.all(image[0, 0] == image[0, -1]) and np.all(image[0, 0] == image[-1, 0]) \ and np.all(image[0, 0] == image[-1, -1]): return np.any(image != image[0, 0], -1) return np.ones_like(image[:, :, 0], dtype=bool) def download_image(url, save_path): response = requests.get(url) with open(save_path, 'wb') as file: file.write(response.content) def process_image(image, res, patch_size, decimation=4): image = torch.from_numpy(np.array(image) / 255.).float().permute(2, 0, 1).to(device) tgt_size = (int(image.shape[-2] * res / image.shape[-1]), res) if image.shape[-2] > image.shape[-1]: tgt_size = (res, int(image.shape[-1] * res / image.shape[-2])) patch_h, patch_w = tgt_size[0] // decimation, tgt_size[1] // decimation image_resized = T.functional.resize(image, (patch_h * patch_size, patch_w * patch_size)) image_resized = imagenet_transform(image_resized) return image_resized def generate_grid(x, y, stride): x_coords = np.arange(0, x, grid_stride) y_coords = np.arange(0, y, grid_stride) x_mesh, y_mesh = np.meshgrid(x_coords, y_coords) kp = np.column_stack((x_mesh.ravel(), y_mesh.ravel())).astype(float) return kp def pca(feat, pca_dim=3): feat_flattened = feat mean = torch.mean(feat_flattened, dim=0) centered_features = feat_flattened - mean U, S, V = torch.pca_lowrank(centered_features, q=pca_dim) reduced_features = torch.matmul(centered_features, V[:, :pca_dim]) return reduced_features def co_pca(feat1, feat2, pca_dim=3): co_feats = torch.cat((feat1.reshape(-1, feat1.shape[-1]), feat2.reshape(-1, feat2.shape[-1])), dim=0) feats = pca(co_feats) feat1_pca = feats[:feat1.shape[0]*feat1.shape[1]].reshape(feat1.shape[0], feat1.shape[1], -1) feat2_pca = feats[feat1.shape[0]*feat1.shape[1]:].reshape(feat2.shape[0], feat2.shape[1], -1) return feat1_pca, feat2_pca def draw_correspondence(feat1, feat2, color1, mask1, mask2): original_mask2_shape = mask2.shape mask1, mask2 = mask1.reshape(-1), mask2.reshape(-1) distances = torch.cdist(feat1.reshape(-1, feat1.shape[-1])[mask1], feat2.reshape(-1, feat2.shape[-1])[mask2]) nearest = torch.argmin(distances, dim=0) color2 = torch.zeros((mask2.shape[0], 3,)).to(device) color2[mask2] = color1.reshape(-1, 3)[mask1][nearest] color2 = color2.reshape(*original_mask2_shape, 3) return color2 def load_model(options): original_models = {} fine_models = {} for option in tqdm(options): print('Please wait ...') print('loading weights of ', option) fine_models[option] = torch.hub.load(".", model_card[option], source='local').to(device) original_models[option] = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=fine_models[option].backbone_name).eval().to(device) print('Done! Now play the demo :)') return original_models, fine_models if __name__ == "__main__": if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print("device: ") print(device) example_dir = "examples" os.makedirs(example_dir, exist_ok=True) image_input1 = gr.Image(label="Choose an image:", height=500, type="pil", image_mode='RGB', sources=['upload', 'webcam', 'clipboard'] ) image_input2 = gr.Image(label="Choose another image:", height=500, type="pil", image_mode='RGB', sources=['upload', 'webcam', 'clipboard'] ) options = ['DINOv2-Base'] model_option = gr.Radio(options, value="DINOv2-Base", label='Choose a 2D foundation model') model_card = { "DINOv2-Base": "dinov2_base", } os.environ['TORCH_HOME'] = '/tmp/.cache' # os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache' # Pre-load all models original_models, fine_models = load_model(options) @spaces.GPU def main(image1, image2, model_option, kmeans_num): if image1 is None or image2 is None: return None # Select model original_model = original_models[model_option] fine_model = fine_models[model_option] images_resized = [process_image(image, 640, 14, decimation=8) for image in [image1, image2]] masks = [torch.from_numpy(get_bg_mask(image)).to(device) for image in [image1, image2]] feat_shapes = [(images_resized[0].shape[-2] // 14, images_resized[0].shape[-1] // 14), (images_resized[1].shape[-2] // 14, images_resized[1].shape[-1] // 14)] masks_resized = [T.functional.resize(mask.float()[None], feat_shape, interpolation=T.functional.InterpolationMode.NEAREST_EXACT)[0] for mask, feat_shape in zip(masks, feat_shapes)] with torch.no_grad(): original_feats = [original_model.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1) for image, feat_shape in zip(images_resized, feat_shapes)] original_feats = [F.normalize(feat, p=2, dim=-1) for feat in original_feats] original_color1 = torch.zeros((original_feats[0].shape[0] * original_feats[0].shape[1], 3,)).to(device) color = pca((original_feats[0][masks_resized[0] > 0]), 3) color = (color - color.min()) / (color.max() - color.min()) original_color1[masks_resized[0].reshape(-1) > 0] = color original_color1 = original_color1.reshape(*original_feats[0].shape[:2], 3) original_color2 = draw_correspondence(original_feats[0], original_feats[1], original_color1, masks_resized[0] > 0, masks_resized[1] > 0) fine_feats = [fine_model.dinov2.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1) for image, feat_shape in zip(images_resized, feat_shapes)] fine_feats = [fine_model.refine_conv(feat[None].permute(0, 3, 1, 2)).permute(0, 2, 3, 1)[0] for feat in fine_feats] fine_feats = [F.normalize(feat, p=2, dim=-1) for feat in fine_feats] fine_color2 = draw_correspondence(fine_feats[0], fine_feats[1], original_color1, masks_resized[0] > 0, masks_resized[1] > 0) fig, ax = plt.subplots(2, 2, squeeze=False) ax[0][0].imshow(original_color1.cpu().numpy()) ax[0][1].text(-0.1, 0.5, "Original " + model_option, fontsize=7, rotation=90, va='center', transform=ax[0][1].transAxes) ax[0][1].imshow(original_color2.cpu().numpy()) # ax[1][0].imshow(fine_color1.cpu().numpy()) ax[1][1].text(-0.1, 0.5, "Finetuned " + model_option, fontsize=7, rotation=90, va='center', transform=ax[1][1].transAxes) ax[1][1].imshow(fine_color2.cpu().numpy()) for xx in ax: for x in xx: x.xaxis.set_major_formatter(plt.NullFormatter()) x.yaxis.set_major_formatter(plt.NullFormatter()) x.set_xticks([]) x.set_yticks([]) x.axis('off') plt.tight_layout() plt.close(fig) return fig demo = gr.Interface( title="
\

3DCorrEnhance

\

Multiview Equivariance Improves 3D Correspondence Understanding with Minimal Feature Finetuning

\

ICLR 2025

\
", description="", fn=main, inputs=[image_input1, image_input2, model_option], outputs="plot", examples=[ ["examples/objs/1-1.png", "examples/objs/1-2.png", "DINOv2-Base"], ["examples/scenes/1-1.jpg", "examples/scenes/1-2.jpg", "DINOv2-Base"], ["examples/scenes/2-1.jpg", "examples/scenes/2-2.jpg", "DINOv2-Base"], ], cache_examples=True) demo.launch()