Spaces:
Runtime error
Runtime error
Francisco Santos
commited on
Commit
·
2bf0a39
1
Parent(s):
270353e
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import os
|
6 |
+
from transformers import AutoTokenizer, pipeline
|
7 |
+
|
8 |
+
models = {
|
9 |
+
"model_n1": "sileod/deberta-v3-base-tasksource-nli",
|
10 |
+
# "model_n2": "roberta-large-mnli",
|
11 |
+
# "model_n3": "facebook/bart-large-mnli",
|
12 |
+
# "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
|
13 |
+
}
|
14 |
+
def open_html(file):
|
15 |
+
with open(file.name, "r") as f:
|
16 |
+
content = f.read()
|
17 |
+
return content
|
18 |
+
|
19 |
+
def find_form_fields(html_content):
|
20 |
+
|
21 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
22 |
+
|
23 |
+
# find all form tags
|
24 |
+
forms = soup.find_all('form')
|
25 |
+
|
26 |
+
form_fields = []
|
27 |
+
|
28 |
+
for form in forms:
|
29 |
+
# find all input and select tags within each form
|
30 |
+
input_tags = form.find_all('input')
|
31 |
+
select_tags = form.find_all('select')
|
32 |
+
|
33 |
+
for tag in input_tags:
|
34 |
+
form_fields.append(str(tag))
|
35 |
+
|
36 |
+
for tag in select_tags:
|
37 |
+
form_fields.append(str(tag))
|
38 |
+
|
39 |
+
# Convert the list to a single string for display
|
40 |
+
return form_fields
|
41 |
+
|
42 |
+
def load_json(json_file):
|
43 |
+
with open(json_file, 'r') as f:
|
44 |
+
data = json.load(f)
|
45 |
+
return data
|
46 |
+
|
47 |
+
def classify_lines(text, candidate_labels, model_name):
|
48 |
+
start_time = time.time() # Start measuring time
|
49 |
+
classifier = pipeline('zero-shot-classification', model=model_name)
|
50 |
+
|
51 |
+
# Check if the text is already a list or if it needs splitting
|
52 |
+
if isinstance(text, list):
|
53 |
+
lines = text
|
54 |
+
else:
|
55 |
+
lines = text.split('\n')
|
56 |
+
|
57 |
+
classified_lines = []
|
58 |
+
for line in lines:
|
59 |
+
if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
|
60 |
+
# Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
|
61 |
+
results = classifier(line, candidate_labels=candidate_labels)
|
62 |
+
top_classifications = results['labels'][:2] # Get the top two classifications
|
63 |
+
top_scores = results['scores'][:2] # Get the top two scores
|
64 |
+
classified_lines.append((line, list(zip(top_classifications, top_scores))))
|
65 |
+
end_time = time.time() # Stop measuring time
|
66 |
+
execution_time = end_time - start_time # Calculate execution time
|
67 |
+
return classified_lines, execution_time
|
68 |
+
|
69 |
+
def classify_lines_json(text, json_content, candidate_labels, model_name, output_file_path):
|
70 |
+
start_time = time.time() # Start measuring time
|
71 |
+
classifier = pipeline('zero-shot-classification', model=model_name)
|
72 |
+
|
73 |
+
# Check if the text is already a list or if it needs splitting
|
74 |
+
if isinstance(text, list):
|
75 |
+
lines = text
|
76 |
+
else:
|
77 |
+
lines = text.split('\n')
|
78 |
+
|
79 |
+
# Open the output.html file in write mode
|
80 |
+
output_content = []
|
81 |
+
|
82 |
+
with open(output_file_path, 'w') as output_file:
|
83 |
+
for line in lines:
|
84 |
+
|
85 |
+
if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
|
86 |
+
# Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
|
87 |
+
results = classifier(line, candidate_labels=candidate_labels)
|
88 |
+
top_classifications = results['labels'][:2] # Get the top two classifications
|
89 |
+
top_scores = results['scores'][:2] # Get the top two scores
|
90 |
+
line = line + f"<!-- Input: {json_content[top_classifications[0]]} with this certainty: {top_scores[0]} -->"
|
91 |
+
output_file.write(line + '\n')
|
92 |
+
output_content.append(line + '\n')
|
93 |
+
|
94 |
+
|
95 |
+
end_time = time.time() # Stop measuring time
|
96 |
+
execution_time = end_time - start_time # Calculate execution time
|
97 |
+
return output_content, execution_time
|
98 |
+
|
99 |
+
def retrieve_fields(data, path=''):
|
100 |
+
"""Recursively retrieve all fields from a given JSON structure and prompt for filling."""
|
101 |
+
fields = {}
|
102 |
+
|
103 |
+
# If the data is a dictionary
|
104 |
+
if isinstance(data, dict):
|
105 |
+
for key, value in data.items():
|
106 |
+
# Construct the updated path for nested structures
|
107 |
+
new_path = f"{path}.{key}" if path else key
|
108 |
+
fields.update(retrieve_fields(value, new_path))
|
109 |
+
|
110 |
+
# If the data is a list, iterate over its items
|
111 |
+
elif isinstance(data, list):
|
112 |
+
for index, item in enumerate(data):
|
113 |
+
new_path = f"{path}[{index}]"
|
114 |
+
fields.update(retrieve_fields(item, new_path))
|
115 |
+
|
116 |
+
# If the data is a simple type (str, int, etc.)
|
117 |
+
else:
|
118 |
+
prompt = f"Please fill in the {path} field." if not data else data
|
119 |
+
fields[path] = prompt
|
120 |
+
|
121 |
+
return fields
|
122 |
+
|
123 |
+
def retrieve_fields_from_file(file_path):
|
124 |
+
"""Load JSON data from a file, then retrieve all fields and prompt for filling."""
|
125 |
+
with open(file_path.name, 'r') as f:
|
126 |
+
data = f.read()
|
127 |
+
|
128 |
+
return retrieve_fields(json.loads(data))
|
129 |
+
|
130 |
+
|
131 |
+
def process_files(html_file, json_file):
|
132 |
+
# This function will process the files.
|
133 |
+
# Replace this with your own logic.
|
134 |
+
output_file_path = "./output.html"
|
135 |
+
# Open and read the files
|
136 |
+
html_content = open_html(html_file)
|
137 |
+
#print(html_content)
|
138 |
+
html_inputs = find_form_fields(html_content)
|
139 |
+
|
140 |
+
json_content = retrieve_fields_from_file(json_file)
|
141 |
+
#Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]
|
142 |
+
|
143 |
+
# Classify lines and measure execution time
|
144 |
+
for model_name in models.values():
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
146 |
+
|
147 |
+
html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date"], model_name)
|
148 |
+
|
149 |
+
json_classified_lines, json_execution_time = classify_lines_json(html_content, json_content, list(json_content.keys()), model_name, output_file_path)
|
150 |
+
|
151 |
+
# print(str(html_execution_time) + " - " + str(html_classified_lines))
|
152 |
+
# print(str(json_execution_time) + " - " + str(json_classified_lines))
|
153 |
+
#FILL HERE
|
154 |
+
|
155 |
+
print(type(json_classified_lines))
|
156 |
+
# Assuming your function returns the processed HTML
|
157 |
+
#json_classified_lines
|
158 |
+
#return '\n'.join(map(str, html_classified_lines))
|
159 |
+
return '\n'.join(map(str, json_classified_lines))
|
160 |
+
|
161 |
+
iface = gr.Interface(fn=process_files,
|
162 |
+
inputs=[gr.inputs.File(label="Upload HTML File"), gr.inputs.File(label="Upload JSON File")],
|
163 |
+
outputs="text")
|
164 |
+
|
165 |
+
iface.launch()
|