Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import CLIPModel, CLIPProcessor | |
from PIL import Image | |
import requests | |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub | |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned" | |
print("Initializing the application...") | |
try: | |
print("Loading the model from Hugging Face Model Hub...") | |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True) | |
processor = CLIPProcessor.from_pretrained(model_name) | |
print("Model and processor loaded successfully.") | |
except Exception as e: | |
print(f"Error loading the model or processor: {e}") | |
raise RuntimeError(f"Failed to load model: {e}") | |
# Step 2: Define the Inference Function | |
def classify_image(image): | |
""" | |
Classify an image as 'safe' or 'unsafe' and return probabilities. | |
Args: | |
image (PIL.Image.Image): Uploaded image. | |
Returns: | |
dict: Classification results or an error message. | |
""" | |
try: | |
print("Starting image classification...") | |
# Validate input | |
if image is None: | |
raise ValueError("No image provided. Please upload a valid image.") | |
# Validate image format | |
if not hasattr(image, "convert"): | |
raise ValueError("Invalid image format. Please upload a valid image (JPEG, PNG, etc.).") | |
# Define categories | |
categories = ["safe", "unsafe"] | |
# Process the image with the processor | |
print("Processing the image...") | |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True) | |
print(f"Processed inputs: {inputs}") | |
# Run inference with the model | |
print("Running model inference...") | |
outputs = model(**inputs) | |
print(f"Model outputs: {outputs}") | |
# Extract logits and probabilities | |
logits_per_image = outputs.logits_per_image # Image-text similarity scores | |
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities | |
print(f"Calculated probabilities: {probs}") | |
# Extract probabilities for each category | |
safe_prob = probs[0][0].item() * 100 # Safe percentage | |
unsafe_prob = probs[0][1].item() * 100 # Unsafe percentage | |
# Return results | |
return { | |
"safe": f"{safe_prob:.2f}%", | |
"unsafe": f"{unsafe_prob:.2f}%" | |
} | |
except Exception as e: | |
# Log and return detailed error messages | |
print(f"Error during classification: {e}") | |
return {"Error": str(e)} | |
# Step 3: Set Up Gradio Interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(label="Output"), # Display probabilities as progress bars | |
title="Content Safety Classification", | |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.", | |
) | |
# Step 4: Test Before Launch | |
if __name__ == "__main__": | |
print("Testing model locally with a sample image...") | |
try: | |
# Test with a sample image | |
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png" | |
test_image = Image.open(requests.get(url, stream=True).raw) | |
# Run the classification function | |
print("Running local test...") | |
result = classify_image(test_image) | |
print(f"Local Test Result: {result}") | |
except Exception as e: | |
print(f"Error during local test: {e}") | |
# Launch Gradio Interface | |
print("Launching the Gradio interface...") | |
iface.launch() | |