Content_safety / app.py
Dileep7729's picture
Update app.py
f3de939 verified
raw
history blame
2.5 kB
import gradio as gr
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
# Load the model and processor
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
print("Loading the model and processor...")
try:
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
processor = CLIPProcessor.from_pretrained(model_name)
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading the model or processor: {e}")
raise RuntimeError(f"Failed to load model: {e}")
# Define the inference function
def classify_image(image):
try:
print("Starting image classification...")
# Validate image input
if image is None:
raise ValueError("No image provided. Please upload a valid image.")
if not hasattr(image, "convert"):
raise ValueError("Uploaded file is not a valid image format.")
# Define categories
categories = ["safe", "unsafe"]
print(f"Categories: {categories}")
# Process the image
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
print(f"Processed inputs: {inputs}")
# Perform inference
outputs = model(**inputs)
print(f"Model outputs: {outputs}")
# Calculate probabilities
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(f"Probabilities: {probs}")
# Extract probabilities
safe_prob = probs[0][0].item() * 100
unsafe_prob = probs[0][1].item() * 100
print(f"Safe: {safe_prob:.2f}%, Unsafe: {unsafe_prob:.2f}%")
# Determine the predicted category
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
return predicted_category, {"safe": f"{safe_prob:.2f}%", "unsafe": f"{unsafe_prob:.2f}%"}
except Exception as e:
print(f"Error during classification: {e}")
return f"Error: {str(e)}", {}
# Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.Textbox(label="Predicted Category"),
gr.Label(label="Probabilities"),
],
title="Content Safety Classification",
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
)
if __name__ == "__main__":
print("Launching Gradio interface...")
iface.launch()