Content_safety / app.py
Dileep7729's picture
Update app.py
a64c351 verified
import gradio as gr
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
print("Initializing the application...")
try:
print("Loading the model from Hugging Face Model Hub...")
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
processor = CLIPProcessor.from_pretrained(model_name)
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading the model or processor: {e}")
raise RuntimeError(f"Failed to load model: {e}")
# Step 2: Define the Inference Function
def classify_image(image):
"""
Classify an image as 'safe' or 'unsafe' and return probabilities.
"""
try:
if image is None:
raise ValueError("No image provided. Please upload a valid image.")
# Define categories
unsafe_categories = ["hate", "sexual", "violent", "self-harm"]
safe_categories = ["safe", "retail product"]
categories = safe_categories + unsafe_categories
# Process the image
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
# Run inference
outputs = model(**inputs)
# Extract logits and apply softmax
logits_per_image = outputs.logits_per_image # Shape: [1, 2]
probs = logits_per_image.softmax(dim=1).detach().numpy() # Convert logits to probabilities
# Extract probabilities for each category
safe_prob = sum(value if categories[i] in safe_categories else 0.0 for i, value in enumerate(probs[0]))
unsafe_prob = sum(value if categories[i] in unsafe_categories else 0.0 for i, value in enumerate(probs[0]))
#debug
for i, value in enumerate(probs[0]):
print(categories[i], value)
# Return raw probabilities
return {
"safe": safe_prob, # Leave as a fraction (e.g., 0.92)
"unsafe": unsafe_prob # Leave as a fraction (e.g., 0.08)
}
except Exception as e:
return {"Error": str(e)}
# Step 3: Set Up Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=2), # Use gr.Label to display probabilities with a bar-style visualization
title="Content Safety Classification",
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
)
# Step 4: Launch Gradio Interface
if __name__ == "__main__":
print("Launching the Gradio interface...")
iface.launch()
# Save the fine-tuned model
model.save_pretrained("fine-tuned-model")
processor.save_pretrained("fine-tuned-model")
print("Model and processor saved locally in the 'fine-tuned-model' directory.")