Spaces:
Sleeping
Sleeping
Dileep7729
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
from PIL import Image
|
4 |
-
import requests
|
5 |
|
6 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
7 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
@@ -68,7 +67,6 @@ def classify_image(image):
|
|
68 |
}
|
69 |
|
70 |
except Exception as e:
|
71 |
-
# Log and return detailed error messages
|
72 |
print(f"Error during classification: {e}")
|
73 |
return {"Error": str(e)}
|
74 |
|
@@ -76,27 +74,13 @@ def classify_image(image):
|
|
76 |
iface = gr.Interface(
|
77 |
fn=classify_image,
|
78 |
inputs=gr.Image(type="pil"),
|
79 |
-
outputs=gr.
|
80 |
title="Content Safety Classification",
|
81 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
82 |
)
|
83 |
|
84 |
-
# Step 4:
|
85 |
if __name__ == "__main__":
|
86 |
-
print("Testing model locally with a sample image...")
|
87 |
-
try:
|
88 |
-
# Test with a sample image
|
89 |
-
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
|
90 |
-
test_image = Image.open(requests.get(url, stream=True).raw)
|
91 |
-
|
92 |
-
# Run the classification function
|
93 |
-
print("Running local test...")
|
94 |
-
result = classify_image(test_image)
|
95 |
-
print(f"Local Test Result: {result}")
|
96 |
-
except Exception as e:
|
97 |
-
print(f"Error during local test: {e}")
|
98 |
-
|
99 |
-
# Launch Gradio Interface
|
100 |
print("Launching the Gradio interface...")
|
101 |
iface.launch()
|
102 |
|
@@ -128,5 +112,6 @@ if __name__ == "__main__":
|
|
128 |
|
129 |
|
130 |
|
|
|
131 |
|
132 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
6 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
|
|
67 |
}
|
68 |
|
69 |
except Exception as e:
|
|
|
70 |
print(f"Error during classification: {e}")
|
71 |
return {"Error": str(e)}
|
72 |
|
|
|
74 |
iface = gr.Interface(
|
75 |
fn=classify_image,
|
76 |
inputs=gr.Image(type="pil"),
|
77 |
+
outputs=gr.Textbox(label="Output (Debug Mode)"), # Use Textbox to display errors if any occur
|
78 |
title="Content Safety Classification",
|
79 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
80 |
)
|
81 |
|
82 |
+
# Step 4: Launch Gradio Interface
|
83 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
print("Launching the Gradio interface...")
|
85 |
iface.launch()
|
86 |
|
|
|
112 |
|
113 |
|
114 |
|
115 |
+
|
116 |
|
117 |
|