Spaces:
Sleeping
Sleeping
Dileep7729
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
6 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
@@ -16,7 +17,35 @@ except Exception as e:
|
|
16 |
print(f"Error loading the model or processor: {e}")
|
17 |
raise RuntimeError(f"Failed to load model: {e}")
|
18 |
|
19 |
-
# Step 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def classify_image(image):
|
21 |
"""
|
22 |
Classify an image as 'safe' or 'unsafe' and return probabilities.
|
@@ -25,7 +54,7 @@ def classify_image(image):
|
|
25 |
image (PIL.Image.Image): Uploaded image.
|
26 |
|
27 |
Returns:
|
28 |
-
str: Predicted category
|
29 |
dict: Probabilities for "safe" and "unsafe".
|
30 |
"""
|
31 |
try:
|
@@ -52,13 +81,13 @@ def classify_image(image):
|
|
52 |
print(f"Model outputs: {outputs}")
|
53 |
|
54 |
# Calculate probabilities
|
55 |
-
logits_per_image = outputs.logits_per_image
|
56 |
-
probs = logits_per_image.softmax(dim=1)
|
57 |
print(f"Probabilities: {probs}")
|
58 |
|
59 |
# Extract probabilities for each category
|
60 |
-
safe_prob = probs[0][0].item() * 100
|
61 |
-
unsafe_prob = probs[0][1].item() * 100
|
62 |
|
63 |
# Determine the predicted category
|
64 |
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
|
@@ -71,7 +100,7 @@ def classify_image(image):
|
|
71 |
print(f"Error during classification: {e}")
|
72 |
return f"Error: {str(e)}", {}
|
73 |
|
74 |
-
# Step
|
75 |
iface = gr.Interface(
|
76 |
fn=classify_image,
|
77 |
inputs=gr.Image(type="pil"),
|
@@ -83,7 +112,7 @@ iface = gr.Interface(
|
|
83 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
84 |
)
|
85 |
|
86 |
-
# Step
|
87 |
if __name__ == "__main__":
|
88 |
print("Launching Gradio interface...")
|
89 |
iface.launch()
|
@@ -107,5 +136,6 @@ if __name__ == "__main__":
|
|
107 |
|
108 |
|
109 |
|
|
|
110 |
|
111 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
from PIL import Image
|
4 |
+
import requests
|
5 |
|
6 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
7 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
|
|
17 |
print(f"Error loading the model or processor: {e}")
|
18 |
raise RuntimeError(f"Failed to load model: {e}")
|
19 |
|
20 |
+
# Step 2: Minimal Test Case to Verify Model and Processor
|
21 |
+
try:
|
22 |
+
print("Running a minimal test case with the model...")
|
23 |
+
|
24 |
+
# Test Image URL
|
25 |
+
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
|
26 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
27 |
+
|
28 |
+
# Define test categories
|
29 |
+
test_categories = ["safe", "unsafe"]
|
30 |
+
|
31 |
+
# Process the image
|
32 |
+
test_inputs = processor(text=test_categories, images=image, return_tensors="pt", padding=True)
|
33 |
+
print(f"Test inputs processed: {test_inputs}")
|
34 |
+
|
35 |
+
# Perform inference
|
36 |
+
test_outputs = model(**test_inputs)
|
37 |
+
print(f"Test outputs: {test_outputs}")
|
38 |
+
|
39 |
+
# Check probabilities
|
40 |
+
test_logits = test_outputs.logits_per_image
|
41 |
+
test_probs = test_logits.softmax(dim=1)
|
42 |
+
print(f"Test probabilities: {test_probs}")
|
43 |
+
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error during the minimal test case: {e}")
|
46 |
+
raise RuntimeError(f"Test case failed: {e}")
|
47 |
+
|
48 |
+
# Step 3: Define the Inference Function
|
49 |
def classify_image(image):
|
50 |
"""
|
51 |
Classify an image as 'safe' or 'unsafe' and return probabilities.
|
|
|
54 |
image (PIL.Image.Image): Uploaded image.
|
55 |
|
56 |
Returns:
|
57 |
+
str: Predicted category.
|
58 |
dict: Probabilities for "safe" and "unsafe".
|
59 |
"""
|
60 |
try:
|
|
|
81 |
print(f"Model outputs: {outputs}")
|
82 |
|
83 |
# Calculate probabilities
|
84 |
+
logits_per_image = outputs.logits_per_image
|
85 |
+
probs = logits_per_image.softmax(dim=1)
|
86 |
print(f"Probabilities: {probs}")
|
87 |
|
88 |
# Extract probabilities for each category
|
89 |
+
safe_prob = probs[0][0].item() * 100
|
90 |
+
unsafe_prob = probs[0][1].item() * 100
|
91 |
|
92 |
# Determine the predicted category
|
93 |
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
|
|
|
100 |
print(f"Error during classification: {e}")
|
101 |
return f"Error: {str(e)}", {}
|
102 |
|
103 |
+
# Step 4: Set Up Gradio Interface
|
104 |
iface = gr.Interface(
|
105 |
fn=classify_image,
|
106 |
inputs=gr.Image(type="pil"),
|
|
|
112 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
113 |
)
|
114 |
|
115 |
+
# Step 5: Launch Gradio Interface
|
116 |
if __name__ == "__main__":
|
117 |
print("Launching Gradio interface...")
|
118 |
iface.launch()
|
|
|
136 |
|
137 |
|
138 |
|
139 |
+
|
140 |
|
141 |
|