Spaces:
Sleeping
Sleeping
Dileep7729
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,30 @@ import gradio as gr
|
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
from PIL import Image
|
4 |
|
5 |
-
# Load
|
6 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
7 |
-
print("
|
8 |
|
9 |
try:
|
10 |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
11 |
processor = CLIPProcessor.from_pretrained(model_name)
|
12 |
print("Model and processor loaded successfully.")
|
13 |
except Exception as e:
|
14 |
-
print(f"Error loading
|
15 |
-
raise RuntimeError(f"Failed to load model: {e}")
|
16 |
|
17 |
-
|
|
|
18 |
def classify_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
try:
|
20 |
print("Starting image classification...")
|
21 |
|
@@ -23,52 +33,56 @@ def classify_image(image):
|
|
23 |
if image is None:
|
24 |
raise ValueError("No image provided. Please upload a valid image.")
|
25 |
if not hasattr(image, "convert"):
|
26 |
-
raise ValueError("Uploaded file is not a valid image format.")
|
27 |
|
28 |
-
# Define categories
|
29 |
categories = ["safe", "unsafe"]
|
30 |
-
print(f"
|
31 |
|
32 |
-
# Process
|
33 |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
|
34 |
-
print(
|
35 |
|
36 |
# Perform inference
|
37 |
outputs = model(**inputs)
|
38 |
-
print(
|
39 |
|
40 |
# Calculate probabilities
|
41 |
logits_per_image = outputs.logits_per_image
|
42 |
probs = logits_per_image.softmax(dim=1)
|
43 |
print(f"Probabilities: {probs}")
|
44 |
|
45 |
-
# Extract probabilities
|
46 |
safe_prob = probs[0][0].item() * 100
|
47 |
unsafe_prob = probs[0][1].item() * 100
|
48 |
print(f"Safe: {safe_prob:.2f}%, Unsafe: {unsafe_prob:.2f}%")
|
49 |
|
50 |
# Determine the predicted category
|
51 |
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
|
|
|
|
|
|
|
52 |
return predicted_category, {"safe": f"{safe_prob:.2f}%", "unsafe": f"{unsafe_prob:.2f}%"}
|
53 |
|
54 |
except Exception as e:
|
55 |
print(f"Error during classification: {e}")
|
56 |
-
return
|
|
|
57 |
|
58 |
-
# Gradio
|
59 |
iface = gr.Interface(
|
60 |
fn=classify_image,
|
61 |
-
inputs=gr.Image(type="pil"),
|
62 |
outputs=[
|
63 |
-
gr.Textbox(label="Predicted Category"),
|
64 |
-
gr.Label(label="Probabilities"),
|
65 |
],
|
66 |
title="Content Safety Classification",
|
67 |
-
description="Upload an image to classify it as 'safe' or 'unsafe' with
|
68 |
)
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
-
print("Launching Gradio interface...")
|
72 |
iface.launch()
|
73 |
|
74 |
|
@@ -93,5 +107,6 @@ if __name__ == "__main__":
|
|
93 |
|
94 |
|
95 |
|
|
|
96 |
|
97 |
|
|
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
from PIL import Image
|
4 |
|
5 |
+
# Load Model and Processor
|
6 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
7 |
+
print("Initializing the model and processor...")
|
8 |
|
9 |
try:
|
10 |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
11 |
processor = CLIPProcessor.from_pretrained(model_name)
|
12 |
print("Model and processor loaded successfully.")
|
13 |
except Exception as e:
|
14 |
+
print(f"Error loading model or processor: {e}")
|
15 |
+
raise RuntimeError(f"Failed to load the model: {e}")
|
16 |
|
17 |
+
|
18 |
+
# Inference Function
|
19 |
def classify_image(image):
|
20 |
+
"""
|
21 |
+
Classifies an image as 'safe' or 'unsafe' using the CLIP model.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
image (PIL.Image.Image): Uploaded image.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
Tuple: Predicted category and probabilities for "safe" and "unsafe".
|
28 |
+
"""
|
29 |
try:
|
30 |
print("Starting image classification...")
|
31 |
|
|
|
33 |
if image is None:
|
34 |
raise ValueError("No image provided. Please upload a valid image.")
|
35 |
if not hasattr(image, "convert"):
|
36 |
+
raise ValueError("Uploaded file is not a valid image format (JPEG, PNG, etc.).")
|
37 |
|
38 |
+
# Define classification categories
|
39 |
categories = ["safe", "unsafe"]
|
40 |
+
print(f"Using categories: {categories}")
|
41 |
|
42 |
+
# Process image using CLIPProcessor
|
43 |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
|
44 |
+
print("Image processed successfully.")
|
45 |
|
46 |
# Perform inference
|
47 |
outputs = model(**inputs)
|
48 |
+
print("Inference completed successfully.")
|
49 |
|
50 |
# Calculate probabilities
|
51 |
logits_per_image = outputs.logits_per_image
|
52 |
probs = logits_per_image.softmax(dim=1)
|
53 |
print(f"Probabilities: {probs}")
|
54 |
|
55 |
+
# Extract probabilities for each category
|
56 |
safe_prob = probs[0][0].item() * 100
|
57 |
unsafe_prob = probs[0][1].item() * 100
|
58 |
print(f"Safe: {safe_prob:.2f}%, Unsafe: {unsafe_prob:.2f}%")
|
59 |
|
60 |
# Determine the predicted category
|
61 |
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
|
62 |
+
print(f"Predicted Category: {predicted_category}")
|
63 |
+
|
64 |
+
# Return category and probabilities
|
65 |
return predicted_category, {"safe": f"{safe_prob:.2f}%", "unsafe": f"{unsafe_prob:.2f}%"}
|
66 |
|
67 |
except Exception as e:
|
68 |
print(f"Error during classification: {e}")
|
69 |
+
return "Error", {"safe": "N/A", "unsafe": "N/A"}
|
70 |
+
|
71 |
|
72 |
+
# Gradio Interface
|
73 |
iface = gr.Interface(
|
74 |
fn=classify_image,
|
75 |
+
inputs=gr.Image(type="pil"), # Accept image input
|
76 |
outputs=[
|
77 |
+
gr.Textbox(label="Predicted Category"), # Predicted category
|
78 |
+
gr.Label(label="Probabilities"), # Probabilities as progress bars
|
79 |
],
|
80 |
title="Content Safety Classification",
|
81 |
+
description="Upload an image to classify it as 'safe' or 'unsafe' with probabilities.",
|
82 |
)
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
+
print("Launching the Gradio interface...")
|
86 |
iface.launch()
|
87 |
|
88 |
|
|
|
107 |
|
108 |
|
109 |
|
110 |
+
|
111 |
|
112 |
|