Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
-
from PIL import Image
|
4 |
|
5 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
6 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
7 |
|
8 |
-
print("
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
13 |
-
processor = CLIPProcessor.from_pretrained(model_name)
|
14 |
-
print("Model and processor loaded successfully.")
|
15 |
-
except Exception as e:
|
16 |
-
print(f"Error loading the model or processor: {e}")
|
17 |
-
raise RuntimeError(f"Failed to load model: {e}")
|
18 |
|
19 |
# Step 2: Define the Inference Function
|
20 |
def classify_image(image):
|
21 |
"""
|
22 |
-
Classify an image as 'safe' or 'unsafe' and
|
23 |
|
24 |
Args:
|
25 |
-
image (PIL.Image.Image):
|
26 |
|
27 |
Returns:
|
28 |
-
dict:
|
29 |
"""
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Run inference with the model
|
50 |
-
print("Running model inference...")
|
51 |
-
outputs = model(**inputs)
|
52 |
-
print(f"Model outputs: {outputs}")
|
53 |
-
|
54 |
-
# Extract logits and probabilities
|
55 |
-
logits_per_image = outputs.logits_per_image # Image-text similarity scores
|
56 |
-
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
57 |
-
print(f"Calculated probabilities: {probs}")
|
58 |
-
|
59 |
-
# Extract probabilities for each category
|
60 |
-
safe_prob = probs[0][0].item() * 100 # Safe percentage
|
61 |
-
unsafe_prob = probs[0][1].item() * 100 # Unsafe percentage
|
62 |
-
|
63 |
-
# Return results
|
64 |
-
return {
|
65 |
-
"safe": f"{safe_prob:.2f}%",
|
66 |
-
"unsafe": f"{unsafe_prob:.2f}%"
|
67 |
-
}
|
68 |
-
|
69 |
-
except Exception as e:
|
70 |
-
# Log and return detailed error messages
|
71 |
-
print(f"Error during classification: {e}")
|
72 |
-
return {"Error": str(e)}
|
73 |
|
74 |
# Step 3: Set Up Gradio Interface
|
75 |
iface = gr.Interface(
|
76 |
fn=classify_image,
|
77 |
inputs=gr.Image(type="pil"),
|
78 |
-
outputs=gr.Label(label="Output"),
|
79 |
title="Content Safety Classification",
|
80 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
81 |
)
|
82 |
|
|
|
83 |
if __name__ == "__main__":
|
84 |
-
print("Testing model locally with a sample image...")
|
85 |
-
from PIL import Image
|
86 |
-
import requests
|
87 |
-
|
88 |
-
# Use a sample image
|
89 |
-
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
|
90 |
-
try:
|
91 |
-
test_image = Image.open(requests.get(url, stream=True).raw)
|
92 |
-
|
93 |
-
# Test the classification function
|
94 |
-
print("Running local test...")
|
95 |
-
test_result = classify_image(test_image)
|
96 |
-
print(f"Local Test Result: {test_result}")
|
97 |
-
except Exception as e:
|
98 |
-
print(f"Error during local test: {e}")
|
99 |
-
|
100 |
-
# Launch Gradio Interface
|
101 |
-
print("Launching the Gradio interface...")
|
102 |
iface.launch()
|
103 |
|
104 |
|
@@ -127,5 +78,6 @@ if __name__ == "__main__":
|
|
127 |
|
128 |
|
129 |
|
|
|
130 |
|
131 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
|
|
3 |
|
4 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
5 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
6 |
|
7 |
+
print("Loading the fine-tuned model from Hugging Face Model Hub...")
|
8 |
+
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
10 |
+
print("Model loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Step 2: Define the Inference Function
|
13 |
def classify_image(image):
|
14 |
"""
|
15 |
+
Classify an image as 'safe' or 'unsafe' with probabilities and display as a progress bar.
|
16 |
|
17 |
Args:
|
18 |
+
image (PIL.Image.Image): The input image.
|
19 |
|
20 |
Returns:
|
21 |
+
dict: A dictionary containing probabilities for 'safe' and 'unsafe'.
|
22 |
"""
|
23 |
+
# Define the main categories
|
24 |
+
main_categories = ["safe", "unsafe"]
|
25 |
+
|
26 |
+
# Process the image with the main categories
|
27 |
+
inputs = processor(text=main_categories, images=image, return_tensors="pt", padding=True)
|
28 |
+
outputs = model(**inputs)
|
29 |
+
logits_per_image = outputs.logits_per_image # Image-text similarity scores
|
30 |
+
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
31 |
+
|
32 |
+
# Extract the probabilities
|
33 |
+
safe_probability = probs[0][0].item() * 100 # Safe percentage
|
34 |
+
unsafe_probability = probs[0][1].item() * 100 # Unsafe percentage
|
35 |
+
|
36 |
+
# Return probabilities as a dictionary for display in Gradio's Label component
|
37 |
+
return {
|
38 |
+
"safe": f"{safe_probability:.2f}%",
|
39 |
+
"unsafe": f"{unsafe_probability:.2f}%"
|
40 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Step 3: Set Up Gradio Interface
|
43 |
iface = gr.Interface(
|
44 |
fn=classify_image,
|
45 |
inputs=gr.Image(type="pil"),
|
46 |
+
outputs=gr.Label(label="Output"),
|
47 |
title="Content Safety Classification",
|
48 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
49 |
)
|
50 |
|
51 |
+
# Step 4: Launch Gradio Interface
|
52 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
iface.launch()
|
54 |
|
55 |
|
|
|
78 |
|
79 |
|
80 |
|
81 |
+
|
82 |
|
83 |
|