Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
3 |
-
from PIL import Image
|
4 |
|
5 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
6 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
7 |
|
8 |
-
print("
|
9 |
-
|
10 |
try:
|
11 |
-
print("Loading the model from Hugging Face Model Hub...")
|
12 |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
13 |
processor = CLIPProcessor.from_pretrained(model_name)
|
14 |
print("Model and processor loaded successfully.")
|
15 |
except Exception as e:
|
16 |
-
print(f"Error loading
|
17 |
raise RuntimeError(f"Failed to load model: {e}")
|
18 |
|
19 |
# Step 2: Define the Inference Function
|
20 |
def classify_image(image):
|
21 |
"""
|
22 |
-
Classify an image as 'safe' or 'unsafe' and
|
23 |
|
24 |
Args:
|
25 |
image (PIL.Image.Image): Uploaded image.
|
26 |
|
27 |
Returns:
|
28 |
-
|
|
|
29 |
"""
|
30 |
try:
|
31 |
-
|
32 |
-
|
33 |
-
# Validate input
|
34 |
if image is None:
|
35 |
raise ValueError("No image provided. Please upload a valid image.")
|
36 |
|
37 |
-
# Validate image format
|
38 |
-
if not hasattr(image, "convert"):
|
39 |
-
raise ValueError("Invalid image format. Please upload a valid image (JPEG, PNG, etc.).")
|
40 |
-
|
41 |
# Define categories
|
42 |
categories = ["safe", "unsafe"]
|
43 |
|
44 |
-
# Process the image
|
45 |
-
print("Processing the image...")
|
46 |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
|
47 |
-
print(f"Processed inputs: {inputs}")
|
48 |
-
|
49 |
-
# Run inference with the model
|
50 |
-
print("Running model inference...")
|
51 |
outputs = model(**inputs)
|
52 |
-
print(f"Model outputs: {outputs}")
|
53 |
|
54 |
-
#
|
55 |
logits_per_image = outputs.logits_per_image # Image-text similarity scores
|
56 |
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
57 |
-
print(f"Calculated probabilities: {probs}")
|
58 |
|
59 |
-
# Extract probabilities
|
60 |
safe_prob = probs[0][0].item() * 100 # Safe percentage
|
61 |
unsafe_prob = probs[0][1].item() * 100 # Unsafe percentage
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
}
|
68 |
|
69 |
except Exception as e:
|
70 |
-
print(f"Error during
|
71 |
-
return
|
72 |
|
73 |
# Step 3: Set Up Gradio Interface
|
74 |
iface = gr.Interface(
|
75 |
fn=classify_image,
|
76 |
inputs=gr.Image(type="pil"),
|
77 |
-
outputs=
|
|
|
|
|
|
|
78 |
title="Content Safety Classification",
|
79 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
80 |
)
|
81 |
|
82 |
# Step 4: Launch Gradio Interface
|
83 |
if __name__ == "__main__":
|
84 |
-
print("Launching
|
85 |
iface.launch()
|
86 |
|
87 |
|
@@ -102,4 +90,5 @@ if __name__ == "__main__":
|
|
102 |
|
103 |
|
104 |
|
|
|
105 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import CLIPModel, CLIPProcessor
|
|
|
3 |
|
4 |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
|
5 |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
|
6 |
|
7 |
+
print("Loading the fine-tuned model from Hugging Face Model Hub...")
|
|
|
8 |
try:
|
|
|
9 |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
|
10 |
processor = CLIPProcessor.from_pretrained(model_name)
|
11 |
print("Model and processor loaded successfully.")
|
12 |
except Exception as e:
|
13 |
+
print(f"Error loading model or processor: {e}")
|
14 |
raise RuntimeError(f"Failed to load model: {e}")
|
15 |
|
16 |
# Step 2: Define the Inference Function
|
17 |
def classify_image(image):
|
18 |
"""
|
19 |
+
Classify an image as 'safe' or 'unsafe' and display category and probabilities.
|
20 |
|
21 |
Args:
|
22 |
image (PIL.Image.Image): Uploaded image.
|
23 |
|
24 |
Returns:
|
25 |
+
str: Predicted category ("safe" or "unsafe").
|
26 |
+
dict: Probabilities for "safe" and "unsafe".
|
27 |
"""
|
28 |
try:
|
29 |
+
# Validate image input
|
|
|
|
|
30 |
if image is None:
|
31 |
raise ValueError("No image provided. Please upload a valid image.")
|
32 |
|
|
|
|
|
|
|
|
|
33 |
# Define categories
|
34 |
categories = ["safe", "unsafe"]
|
35 |
|
36 |
+
# Process the image
|
|
|
37 |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
|
|
|
|
|
|
|
|
|
38 |
outputs = model(**inputs)
|
|
|
39 |
|
40 |
+
# Get logits and probabilities
|
41 |
logits_per_image = outputs.logits_per_image # Image-text similarity scores
|
42 |
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
|
|
43 |
|
44 |
+
# Extract probabilities
|
45 |
safe_prob = probs[0][0].item() * 100 # Safe percentage
|
46 |
unsafe_prob = probs[0][1].item() * 100 # Unsafe percentage
|
47 |
|
48 |
+
# Determine the predicted category
|
49 |
+
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
|
50 |
+
|
51 |
+
# Return the predicted category and probabilities
|
52 |
+
return predicted_category, {"safe": f"{safe_prob:.2f}%", "unsafe": f"{unsafe_prob:.2f}%"}
|
53 |
|
54 |
except Exception as e:
|
55 |
+
print(f"Error during inference: {e}")
|
56 |
+
return f"Error: {str(e)}", {}
|
57 |
|
58 |
# Step 3: Set Up Gradio Interface
|
59 |
iface = gr.Interface(
|
60 |
fn=classify_image,
|
61 |
inputs=gr.Image(type="pil"),
|
62 |
+
outputs=[
|
63 |
+
gr.Textbox(label="Predicted Category"), # Display the predicted category prominently
|
64 |
+
gr.Label(label="Probabilities"), # Display probabilities with a progress bar
|
65 |
+
],
|
66 |
title="Content Safety Classification",
|
67 |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
|
68 |
)
|
69 |
|
70 |
# Step 4: Launch Gradio Interface
|
71 |
if __name__ == "__main__":
|
72 |
+
print("Launching Gradio interface...")
|
73 |
iface.launch()
|
74 |
|
75 |
|
|
|
90 |
|
91 |
|
92 |
|
93 |
+
|
94 |
|