File size: 1,449 Bytes
b1385de
9f71c5e
b1385de
9f71c5e
5fc436a
 
9f71c5e
5fc436a
b1385de
5fc436a
b1385de
 
 
5fc436a
b1385de
 
 
5fc436a
9f71c5e
 
5fc436a
9f71c5e
5fc436a
 
9f71c5e
 
 
 
 
 
5fc436a
9f71c5e
 
5fc436a
 
9f71c5e
5fc436a
9f71c5e
 
5fc436a
9f71c5e
b1385de
 
9f71c5e
5fc436a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
from transformers import BlipProcessor, BlipForConditionalGeneration
import gradio as gr

# Load the Hugging Face token from the environment using the secret name
HUGGINGFACE_TOKEN = os.getenv("Image_classification")

# Load the processor and model with the token
processor = BlipProcessor.from_pretrained(
    "quadranttechnologies/qhub-blip-image-captioning-finetuned", 
    use_auth_token=HUGGINGFACE_TOKEN
)
model = BlipForConditionalGeneration.from_pretrained(
    "quadranttechnologies/qhub-blip-image-captioning-finetuned", 
    use_auth_token=HUGGINGFACE_TOKEN
)

# Function to generate captions for uploaded images
def generate_caption(image):
    try:
        # Prepare the image inputs for the model
        inputs = processor(image, return_tensors="pt")

        # Generate the caption
        outputs = model.generate(**inputs)
        caption = processor.decode(outputs[0], skip_special_tokens=True)
        return caption
    except Exception as e:
        return f"Error generating caption: {e}"

# Set up the Gradio interface
interface = gr.Interface(
    fn=generate_caption,
    inputs=gr.Image(type="pil"),  # Accepts image uploads
    outputs="text",               # Displays generated captions as text
    title="Image Captioning Model",
    description="Upload an image to generate a caption using the fine-tuned BLIP model."
)

# Launch the Gradio app
if __name__ == "__main__":
    interface.launch(share=True)