File size: 1,449 Bytes
b1385de 9f71c5e b1385de 9f71c5e 5fc436a 9f71c5e 5fc436a b1385de 5fc436a b1385de 5fc436a b1385de 5fc436a 9f71c5e 5fc436a 9f71c5e 5fc436a 9f71c5e 5fc436a 9f71c5e 5fc436a 9f71c5e 5fc436a 9f71c5e 5fc436a 9f71c5e b1385de 9f71c5e 5fc436a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import os
from transformers import BlipProcessor, BlipForConditionalGeneration
import gradio as gr
# Load the Hugging Face token from the environment using the secret name
HUGGINGFACE_TOKEN = os.getenv("Image_classification")
# Load the processor and model with the token
processor = BlipProcessor.from_pretrained(
"quadranttechnologies/qhub-blip-image-captioning-finetuned",
use_auth_token=HUGGINGFACE_TOKEN
)
model = BlipForConditionalGeneration.from_pretrained(
"quadranttechnologies/qhub-blip-image-captioning-finetuned",
use_auth_token=HUGGINGFACE_TOKEN
)
# Function to generate captions for uploaded images
def generate_caption(image):
try:
# Prepare the image inputs for the model
inputs = processor(image, return_tensors="pt")
# Generate the caption
outputs = model.generate(**inputs)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"Error generating caption: {e}"
# Set up the Gradio interface
interface = gr.Interface(
fn=generate_caption,
inputs=gr.Image(type="pil"), # Accepts image uploads
outputs="text", # Displays generated captions as text
title="Image Captioning Model",
description="Upload an image to generate a caption using the fine-tuned BLIP model."
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch(share=True)
|