import os from transformers import BlipProcessor, BlipForConditionalGeneration import gradio as gr # Load the token from the environment HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Load the model and processor with the token processor = BlipProcessor.from_pretrained( "quadranttechnologies/Imageclassification", use_auth_token=HUGGINGFACE_TOKEN ) model = BlipForConditionalGeneration.from_pretrained( "quadranttechnologies/Imageclassification", use_auth_token=HUGGINGFACE_TOKEN ) # Define your Gradio interface and logic as before def generate_caption(image): try: inputs = processor(image, return_tensors="pt") outputs = model.generate(**inputs) caption = processor.decode(outputs[0], skip_special_tokens=True) return caption except Exception as e: return f"Error generating caption: {e}" interface = gr.Interface( fn=generate_caption, inputs=gr.Image(type="pil"), outputs="text", title="Image Captioning Model", description="Upload an image to receive a caption generated by the model." ) if __name__ == "__main__": interface.launch(share=True)