File size: 924 Bytes
235c3b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load your fine-tuned model and tokenizer
model_name = "quadranttechnologies/Receipt_Image_Analyzer"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define a prediction function
def analyze_receipt(receipt_text):
inputs = tokenizer(receipt_text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()
return f"Predicted Class: {predicted_class}"
# Create a Gradio interface
interface = gr.Interface(
fn=analyze_receipt,
inputs="text",
outputs="text",
title="Receipt Image Analyzer",
description="Analyze receipts for relevant information using a fine-tuned LLM model.",
)
# Launch the Gradio app
interface.launch()
|