File size: 1,553 Bytes
bd746ed
5b07194
 
bd746ed
a9eefb1
5b07194
 
 
 
b874912
5b07194
 
bd746ed
5b07194
 
 
 
 
 
 
 
bd746ed
5b07194
 
 
bd746ed
5b07194
 
bd746ed
5b07194
bd746ed
5b07194
bd746ed
5b07194
 
 
 
 
bd746ed
 
5b07194
bd746ed
5b07194
 
bd746ed
 
 
 
b443de4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor
from PIL import Image
import torch

# Load the fine-tuned model and processor
model_path = "quadranttechnologies/Receipt_Image_Analyzer"  
model = LayoutLMv3ForTokenClassification.from_pretrained(model_path)
processor = LayoutLMv3Processor.from_pretrained(model_path)

# Define label mapping
id2label = {0: "company", 1: "date", 2: "address", 3: "total", 4: "other"}

# Define prediction function
def predict_receipt(image):
    # Preprocess the image
    encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
    input_ids = encoding["input_ids"]
    attention_mask = encoding["attention_mask"]
    bbox = encoding["bbox"]
    pixel_values = encoding["pixel_values"]

    # Get model predictions
    outputs = model(input_ids=input_ids, attention_mask=attention_mask, bbox=bbox, pixel_values=pixel_values)
    predictions = outputs.logits.argmax(-1).squeeze().tolist()

    # Map predictions to labels
    labeled_output = {id2label[pred]: idx for idx, pred in enumerate(predictions) if pred != 4}

    return labeled_output

# Create Gradio Interface
interface = gr.Interface(
    fn=predict_receipt,
    inputs=gr.inputs.Image(type="pil"),
    outputs="json",
    title="Receipt Information Analyzer",
    description="Upload a scanned receipt image to extract information like company name, date, address, and total."
)

# Launch the interface
if __name__ == "__main__":
    interface.launch()