Dileep7729 commited on
Commit
01b08ca
·
verified ·
1 Parent(s): 11cb3fa

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -57
app.py DELETED
@@ -1,57 +0,0 @@
1
- from PIL import Image
2
- from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor
3
- import gradio as gr
4
- import torch
5
- import pytesseract
6
- import os
7
- import os
8
-
9
-
10
- # Set the Linux path for Tesseract
11
- pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
12
- print("Tesseract version:", os.popen("tesseract --version").read())
13
-
14
-
15
-
16
- # Load the fine-tuned model and processor from local files
17
- model_path = "./" # Path to the directory containing the uploaded model files
18
- model = LayoutLMv3ForTokenClassification.from_pretrained(model_path)
19
- processor = LayoutLMv3Processor.from_pretrained(model_path, apply_ocr=True)
20
-
21
-
22
- # Define label mapping
23
- id2label = {0: "company", 1: "date", 2: "address", 3: "total", 4: "other"}
24
-
25
- # Define prediction function
26
- def predict_receipt(image):
27
- try:
28
- # Preprocess the image
29
- encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
30
- input_ids = encoding["input_ids"]
31
- attention_mask = encoding["attention_mask"]
32
- bbox = encoding["bbox"]
33
- pixel_values = encoding["pixel_values"]
34
-
35
- # Get model predictions
36
- outputs = model(input_ids=input_ids, attention_mask=attention_mask, bbox=bbox, pixel_values=pixel_values)
37
- predictions = outputs.logits.argmax(-1).squeeze().tolist()
38
-
39
- # Map predictions to labels
40
- labeled_output = {id2label[pred]: idx for idx, pred in enumerate(predictions) if pred != 4}
41
-
42
- return labeled_output
43
- except Exception as e:
44
- return {"error": str(e)}
45
-
46
- # Create Gradio Interface
47
- interface = gr.Interface(
48
- fn=predict_receipt,
49
- inputs=gr.Image(type="pil"),
50
- outputs="json",
51
- title="Receipt Information Analyzer",
52
- description="Upload a scanned receipt image to extract information like company name, date, address, and total."
53
- )
54
-
55
- # Launch the interface
56
- if __name__ == "__main__":
57
- interface.launch()