Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor
|
3 |
from PIL import Image
|
|
|
|
|
4 |
import torch
|
5 |
|
6 |
# Load the fine-tuned model and processor
|
@@ -13,26 +13,29 @@ id2label = {0: "company", 1: "date", 2: "address", 3: "total", 4: "other"}
|
|
13 |
|
14 |
# Define prediction function
|
15 |
def predict_receipt(image):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
# Create Gradio Interface
|
33 |
interface = gr.Interface(
|
34 |
fn=predict_receipt,
|
35 |
-
inputs=gr.Image(type="pil"),
|
36 |
outputs="json",
|
37 |
title="Receipt Information Analyzer",
|
38 |
description="Upload a scanned receipt image to extract information like company name, date, address, and total."
|
@@ -48,3 +51,4 @@ if __name__ == "__main__":
|
|
48 |
|
49 |
|
50 |
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
+
from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor
|
3 |
+
import gradio as gr
|
4 |
import torch
|
5 |
|
6 |
# Load the fine-tuned model and processor
|
|
|
13 |
|
14 |
# Define prediction function
|
15 |
def predict_receipt(image):
|
16 |
+
try:
|
17 |
+
# Preprocess the image
|
18 |
+
encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
19 |
+
input_ids = encoding["input_ids"]
|
20 |
+
attention_mask = encoding["attention_mask"]
|
21 |
+
bbox = encoding["bbox"]
|
22 |
+
pixel_values = encoding["pixel_values"]
|
23 |
|
24 |
+
# Get model predictions
|
25 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, bbox=bbox, pixel_values=pixel_values)
|
26 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
27 |
|
28 |
+
# Map predictions to labels
|
29 |
+
labeled_output = {id2label[pred]: idx for idx, pred in enumerate(predictions) if pred != 4}
|
30 |
|
31 |
+
return labeled_output
|
32 |
+
except Exception as e:
|
33 |
+
return {"error": str(e)}
|
34 |
|
35 |
# Create Gradio Interface
|
36 |
interface = gr.Interface(
|
37 |
fn=predict_receipt,
|
38 |
+
inputs=gr.Image(type="pil"),
|
39 |
outputs="json",
|
40 |
title="Receipt Information Analyzer",
|
41 |
description="Upload a scanned receipt image to extract information like company name, date, address, and total."
|
|
|
51 |
|
52 |
|
53 |
|
54 |
+
|