Dileep7729 commited on
Commit
227dccc
·
verified ·
1 Parent(s): 87ad833

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +40 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
3
+ from PIL import Image
4
+ import pytesseract
5
+
6
+ # Load model and processor
7
+ model = LayoutLMv3ForTokenClassification.from_pretrained("./model")
8
+ processor = LayoutLMv3Processor.from_pretrained("./model")
9
+
10
+ # Define label mapping
11
+ id2label = {0: "company", 1: "date", 2: "address", 3: "total", 4: "other"}
12
+
13
+ def predict_receipt(image):
14
+ ocr_data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
15
+ texts = ocr_data["text"]
16
+ boxes = [
17
+ [
18
+ ocr_data["left"][i],
19
+ ocr_data["top"][i],
20
+ ocr_data["left"][i] + ocr_data["width"][i],
21
+ ocr_data["top"][i] + ocr_data["height"][i],
22
+ ]
23
+ for i in range(len(ocr_data["text"]))
24
+ ]
25
+ encoding = processor(image, text=texts, boxes=boxes, return_tensors="pt", truncation=True, padding="max_length")
26
+ outputs = model(**{k: v for k, v in encoding.items()})
27
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
28
+ labeled_output = {id2label[pred]: texts[i] for i, pred in enumerate(predictions) if pred != 4}
29
+ return labeled_output
30
+
31
+ interface = gr.Interface(
32
+ fn=predict_receipt,
33
+ inputs=gr.Image(type="pil"),
34
+ outputs="json",
35
+ title="Receipt Analyzer",
36
+ description="Upload a receipt image to extract key information."
37
+ )
38
+
39
+ if __name__ == "__main__":
40
+ interface.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==3.36
2
+ torch>=1.10.0
3
+ transformers
4
+ pytesseract
5
+ Pillow