Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
3 |
|
4 |
# Load your fine-tuned model and tokenizer
|
5 |
model_name = "quadranttechnologies/Receipt_Image_Analyzer"
|
6 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
# Define a
|
10 |
-
def analyze_receipt(
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
outputs = model(**inputs)
|
13 |
logits = outputs.logits
|
14 |
predicted_class = logits.argmax(-1).item()
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Create a Gradio interface
|
18 |
interface = gr.Interface(
|
19 |
fn=analyze_receipt,
|
20 |
-
inputs="
|
21 |
-
outputs="
|
22 |
title="Receipt Image Analyzer",
|
23 |
-
description="
|
24 |
)
|
25 |
|
26 |
# Launch the Gradio app
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract # Install using `pip install pytesseract` and ensure Tesseract is installed
|
5 |
|
6 |
# Load your fine-tuned model and tokenizer
|
7 |
model_name = "quadranttechnologies/Receipt_Image_Analyzer"
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
+
# Define a function to preprocess the image and predict
|
12 |
+
def analyze_receipt(image):
|
13 |
+
# Perform OCR to extract text from the image
|
14 |
+
extracted_text = pytesseract.image_to_string(image)
|
15 |
+
|
16 |
+
# Tokenize the extracted text
|
17 |
+
inputs = tokenizer(extracted_text, return_tensors="pt", truncation=True, padding=True)
|
18 |
+
|
19 |
+
# Get model predictions
|
20 |
outputs = model(**inputs)
|
21 |
logits = outputs.logits
|
22 |
predicted_class = logits.argmax(-1).item()
|
23 |
+
|
24 |
+
# Optionally return extracted text and prediction as JSON
|
25 |
+
result = {
|
26 |
+
"extracted_text": extracted_text,
|
27 |
+
"predicted_class": predicted_class
|
28 |
+
}
|
29 |
+
return result
|
30 |
|
31 |
# Create a Gradio interface
|
32 |
interface = gr.Interface(
|
33 |
fn=analyze_receipt,
|
34 |
+
inputs=gr.inputs.Image(type="pil"), # Accept image input
|
35 |
+
outputs="json", # Return JSON output
|
36 |
title="Receipt Image Analyzer",
|
37 |
+
description="Upload a receipt image to analyze and classify its contents.",
|
38 |
)
|
39 |
|
40 |
# Launch the Gradio app
|