Delete app.py
Browse files
app.py
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
4 |
-
import pytesseract
|
5 |
-
|
6 |
-
# Set the Tesseract executable path (for Windows users)
|
7 |
-
pytesseract.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe"
|
8 |
-
|
9 |
-
# Load the model and processor
|
10 |
-
processor = LayoutLMv3Processor.from_pretrained("quadranttechnologies/Table_OCR")
|
11 |
-
model = LayoutLMv3ForTokenClassification.from_pretrained("quadranttechnologies/Table_OCR")
|
12 |
-
model.eval()
|
13 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
model.to(device)
|
15 |
-
|
16 |
-
def process_image(image):
|
17 |
-
try:
|
18 |
-
# Preprocess the image using the processor
|
19 |
-
encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
20 |
-
|
21 |
-
# Move inputs to the same device as the model
|
22 |
-
encoding = {key: val.to(device) for key, val in encoding.items()}
|
23 |
-
|
24 |
-
# Perform inference
|
25 |
-
with torch.no_grad():
|
26 |
-
outputs = model(**encoding)
|
27 |
-
predictions = torch.argmax(outputs.logits, dim=-1)
|
28 |
-
|
29 |
-
# Extract input IDs, bounding boxes, and predicted labels
|
30 |
-
words = encoding["input_ids"]
|
31 |
-
bboxes = encoding["bbox"]
|
32 |
-
labels = predictions.squeeze().tolist()
|
33 |
-
|
34 |
-
# Format output as JSON
|
35 |
-
structured_output = []
|
36 |
-
for word_id, bbox, label in zip(words.squeeze().tolist(), bboxes.squeeze().tolist(), labels):
|
37 |
-
# Decode the word ID to text
|
38 |
-
word = processor.tokenizer.decode([word_id]).strip()
|
39 |
-
if word: # Avoid adding empty words
|
40 |
-
structured_output.append({
|
41 |
-
"word": word,
|
42 |
-
"bounding_box": bbox,
|
43 |
-
"label": model.config.id2label[label] # Convert label ID to label name
|
44 |
-
})
|
45 |
-
|
46 |
-
return structured_output
|
47 |
-
|
48 |
-
except Exception as e:
|
49 |
-
return {"error": str(e)} # Return error details if any issue occurs
|
50 |
-
|
51 |
-
# Define the Gradio interface
|
52 |
-
interface = gr.Interface(
|
53 |
-
fn=process_image,
|
54 |
-
inputs=gr.Image(type="pil"), # Accepts image input
|
55 |
-
outputs="json", # Outputs JSON structure
|
56 |
-
title="Table OCR",
|
57 |
-
description="Upload an image (e.g., receipt or document) to extract structured information in JSON format."
|
58 |
-
)
|
59 |
-
|
60 |
-
# Launch the app
|
61 |
-
if __name__ == "__main__":
|
62 |
-
interface.launch(share=True)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|