Dileep7729 commited on
Commit
e34ff72
·
verified ·
1 Parent(s): 86424d0

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -54
app.py DELETED
@@ -1,54 +0,0 @@
1
- from PIL import Image
2
- from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor
3
- import gradio as gr
4
- import torch
5
-
6
- # Load the fine-tuned model and processor
7
- model_path = "quadranttechnologies/Receipt_Image_Analyzer"
8
- model = LayoutLMv3ForTokenClassification.from_pretrained(quadranttechnologies/Receipt_Image_Analyzer)
9
- processor = LayoutLMv3Processor.from_pretrained(quadranttechnologies/Receipt_Image_Analyzer)
10
-
11
- # Define label mapping
12
- id2label = {0: "company", 1: "date", 2: "address", 3: "total", 4: "other"}
13
-
14
- # Define prediction function
15
- def predict_receipt(image):
16
- try:
17
- # Preprocess the image
18
- encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
19
- input_ids = encoding["input_ids"]
20
- attention_mask = encoding["attention_mask"]
21
- bbox = encoding["bbox"]
22
- pixel_values = encoding["pixel_values"]
23
-
24
- # Get model predictions
25
- outputs = model(input_ids=input_ids, attention_mask=attention_mask, bbox=bbox, pixel_values=pixel_values)
26
- predictions = outputs.logits.argmax(-1).squeeze().tolist()
27
-
28
- # Map predictions to labels
29
- labeled_output = {id2label[pred]: idx for idx, pred in enumerate(predictions) if pred != 4}
30
-
31
- return labeled_output
32
- except Exception as e:
33
- return {"error": str(e)}
34
-
35
- # Create Gradio Interface
36
- interface = gr.Interface(
37
- fn=predict_receipt,
38
- inputs=gr.Image(type="pil"),
39
- outputs="json",
40
- title="Receipt Information Analyzer",
41
- description="Upload a scanned receipt image to extract information like company name, date, address, and total."
42
- )
43
-
44
- # Launch the interface
45
- if __name__ == "__main__":
46
- interface.launch()
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-