import gradio as gr import torch from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification import pytesseract # Set the Tesseract executable path (for Windows users) import pytesseract pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # Load the model and processor processor = LayoutLMv3Processor.from_pretrained("quadranttechnologies/Table_OCR") model = LayoutLMv3ForTokenClassification.from_pretrained("quadranttechnologies/Table_OCR") model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def process_image(image): try: # Preprocess the image using the processor encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512) # Move inputs to the same device as the model encoding = {key: val.to(device) for key, val in encoding.items()} # Perform inference with torch.no_grad(): outputs = model(**encoding) predictions = torch.argmax(outputs.logits, dim=-1) # Extract input IDs, bounding boxes, and predicted labels words = encoding["input_ids"] bboxes = encoding["bbox"] labels = predictions.squeeze().tolist() # Format output as JSON structured_output = [] for word_id, bbox, label in zip(words.squeeze().tolist(), bboxes.squeeze().tolist(), labels): # Decode the word ID to text word = processor.tokenizer.decode([word_id]).strip() if word: # Avoid adding empty words structured_output.append({ "word": word, "bounding_box": bbox, "label": model.config.id2label[label] # Convert label ID to label name }) return structured_output except Exception as e: return {"error": str(e)} # Return error details if any issue occurs # Define the Gradio interface interface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), # Accepts image input outputs="json", # Outputs JSON structure title="Table OCR", description="Upload an image (e.g., receipt or document) to extract structured information in JSON format." ) # Launch the app if __name__ == "__main__": interface.launch(share=True)