import gradio as gr import torch from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification import pytesseract import os # Explicitly set the Tesseract path for Hugging Face Spaces pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" # Debugging: Print Tesseract version and PATH details try: tesseract_version = pytesseract.get_tesseract_version() print("Tesseract Version:", tesseract_version) print("Tesseract Path:", pytesseract.pytesseract.tesseract_cmd) print("Environment PATH:", os.environ["PATH"]) except Exception as e: print("Tesseract Debugging Error:", e) # For local development on Windows # Uncomment the line below if running locally on Windows # pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # Load the model and processor processor = LayoutLMv3Processor.from_pretrained("quadranttechnologies/Table_OCR") model = LayoutLMv3ForTokenClassification.from_pretrained("quadranttechnologies/Table_OCR") model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def process_image(image): try: # Preprocess the image using the processor encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512) # Move inputs to the same device as the model encoding = {key: val.to(device) for key, val in encoding.items()} # Perform inference with torch.no_grad(): outputs = model(**encoding) predictions = torch.argmax(outputs.logits, dim=-1) # Extract input IDs, bounding boxes, and predicted labels words = encoding["input_ids"] bboxes = encoding["bbox"] labels = predictions.squeeze().tolist() # Format output as JSON structured_output = [] for word_id, bbox, label in zip(words.squeeze().tolist(), bboxes.squeeze().tolist(), labels): # Decode the word ID to text word = processor.tokenizer.decode([word_id]).strip() if word: # Avoid adding empty words structured_output.append({ "word": word, "bounding_box": bbox, "label": model.config.id2label[label] # Convert label ID to label name }) return structured_output except Exception as e: # Debugging: Log any errors encountered during processing print("Error during processing:", str(e)) return {"error": str(e)} # Define the Gradio interface interface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), # Accepts image input outputs="json", # Outputs JSON structure title="Table OCR", description="Upload an image (e.g., receipt or document) to extract structured information in JSON format." ) # Launch the app if __name__ == "__main__": # Debugging: Check if the app is starting correctly print("Starting Table OCR App...") interface.launch(share=True)