Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SimpleCNN(nn.Module): | |
def __init__(self): | |
super(SimpleCNN, self).__init__() | |
# Convolutional layers | |
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 28x28 -> 28x28 | |
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 28x28 -> 28x28 | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # 28x28 -> 14x14 | |
self.bn1 = nn.BatchNorm2d(32) | |
self.bn2 = nn.BatchNorm2d(64) | |
# Fully connected layers | |
self.fc1 = nn.Linear(64 * 14 * 14, 128) | |
self.dropout = nn.Dropout(0.5) | |
self.fc2 = nn.Linear(128, 10) | |
def forward(self, x): | |
x = F.relu(self.bn1(self.conv1(x))) # Apply first convolution and ReLU | |
x = self.pool(F.relu(self.bn2(self.conv2(x)))) # Apply second convolution, ReLU, and pooling | |
x = torch.flatten(x, 1) # Flatten the feature maps | |
x = F.relu(self.fc1(x)) # Fully connected layer with ReLU | |
x = self.dropout(x) | |
x = self.fc2(x) # Output layer | |
return x | |