quanglnt's picture
Add application files
8c36119
import torch
import torch.nn as nn
import torch.nn.functional as F
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
# Convolutional layers
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 28x28 -> 28x28
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 28x28 -> 28x28
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # 28x28 -> 14x14
self.bn1 = nn.BatchNorm2d(32)
self.bn2 = nn.BatchNorm2d(64)
# Fully connected layers
self.fc1 = nn.Linear(64 * 14 * 14, 128)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x))) # Apply first convolution and ReLU
x = self.pool(F.relu(self.bn2(self.conv2(x)))) # Apply second convolution, ReLU, and pooling
x = torch.flatten(x, 1) # Flatten the feature maps
x = F.relu(self.fc1(x)) # Fully connected layer with ReLU
x = self.dropout(x)
x = self.fc2(x) # Output layer
return x