quangnhat commited on
Commit
c2d3f20
·
1 Parent(s): 127d2ff

update code

Browse files
Files changed (1) hide show
  1. app.py +26 -5
app.py CHANGED
@@ -2,19 +2,37 @@ import torch
2
  import gradio as gr
3
  from diffusers import DiffusionPipeline
4
 
5
- # Load the model once to optimize performance
6
- pipe = DiffusionPipeline.from_pretrained("Lightricks/LTX-Video")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  def generate_video(prompt):
 
 
 
9
  try:
10
  # Generate video frames
11
  images = pipe(prompt).images
12
 
13
  # Save the generated images as a video
14
- # Note: This is a simplified version - you might want to use proper video encoding
15
  output_path = "generated_video.mp4"
16
 
17
- # Convert images to video (you may need additional libraries like OpenCV or moviepy)
18
  import imageio
19
  imageio.mimsave(output_path, images, fps=5)
20
 
@@ -32,4 +50,7 @@ demo = gr.Interface(
32
  )
33
 
34
  if __name__ == "__main__":
35
- demo.launch()
 
 
 
 
2
  import gradio as gr
3
  from diffusers import DiffusionPipeline
4
 
5
+ def load_video_model():
6
+ try:
7
+ # Ensure all necessary libraries are imported
8
+ import sentencepiece
9
+
10
+ # Load the model with specific error handling
11
+ pipe = DiffusionPipeline.from_pretrained("Lightricks/LTX-Video")
12
+ return pipe
13
+ except ImportError as e:
14
+ print(f"Dependency Error: {e}")
15
+ print("Please install required libraries: pip install sentencepiece diffusers transformers torch gradio imageio")
16
+ return None
17
+ except Exception as e:
18
+ print(f"Error loading model: {e}")
19
+ return None
20
+
21
+ # Load the model when the script starts
22
+ pipe = load_video_model()
23
 
24
  def generate_video(prompt):
25
+ if pipe is None:
26
+ return "Error: Model could not be loaded. Check your dependencies."
27
+
28
  try:
29
  # Generate video frames
30
  images = pipe(prompt).images
31
 
32
  # Save the generated images as a video
 
33
  output_path = "generated_video.mp4"
34
 
35
+ # Convert images to video
36
  import imageio
37
  imageio.mimsave(output_path, images, fps=5)
38
 
 
50
  )
51
 
52
  if __name__ == "__main__":
53
+ if pipe is not None:
54
+ demo.launch()
55
+ else:
56
+ print("Could not launch app due to model loading failure.")