File size: 7,580 Bytes
21a2300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import tiktoken

from typing import Dict, Tuple, List


def slide_generation(res, num_tokens_limit=1800):
    new_res = [res[0]]

    for i in range(1, len(res)):
        if not res[i]:
            continue
        prev_cnt = get_num_tokens(new_res[-1])
        curr_cnt = get_num_tokens(res[i])
        if prev_cnt + curr_cnt < num_tokens_limit:
            new_res[-1] += res[i]
        else:
            new_res.append(res[i])
    return new_res


def slide_generation_ver2(res, num_tokens_limit=1800):
    text = "\n".join(res).split("[PE]")

    text = [(t.strip() + "\n[PE]\n") if t else "" for t in text]
    return slide_generation(text, num_tokens_limit=num_tokens_limit)


def parse_prompt(file: str, data: List[str] = None):
    roles = []
    contents = []

    file = open(file, "r")
    for line in file.readlines():
        # if line is empty or a comment, skip
        if "#" in line or not line.strip():
            continue
        if "[user]" in line:
            roles.append("user")
            contents.append([])
            continue
        elif "[assistant]" in line:
            roles.append("assistant")
            contents.append([])
            continue
        elif "[system]" in line:
            roles.append("system")
            contents.append([])
            continue
        if line.strip():
            assert roles, "No role specified"
            contents[-1].append(line.strip())

    # checking roles
    assert roles[0] in ["user", "system"], "First role must be user or system"
    for i in range(1, len(roles)):
        assert roles[i] in ["user", "assistant"], "Roles must be user or assistant"
        assert roles[i] != roles[i - 1], "Roles must alternate between user and assistant"

    contents_str = []
    for content in contents:
        contents_str.append(" ".join(content))

    curr_idx = 0
    for i in range(len(contents_str)):
        tag = f"[data_tag_{curr_idx}]"
        # replace \n with newline
        contents_str[i] = contents_str[i].replace("\\n", "\n")
        if tag in contents_str[i]:
            contents_str[i] = contents_str[i].replace(tag, data[curr_idx])
            curr_idx += 1
    assert curr_idx == len(data), "Not all data tags were replaced"

    messages = []
    for i in range(len(roles)):
        messages.append({"role": roles[i], "content": contents_str[i]})

    return messages


def clean_slides(slide):
    slide_list = slide.split('\n')
    clean_slide_list = []
    for line in slide_list:
        if line[:3] == '[F]' or line[:3] == '[T]' or line[:6] == '[T][T]' or line[:4] == '[PB]' or line[:4] == '[PE]':
            clean_slide_list.append(line)
    return '\n'.join(clean_slide_list)


def generate_latex_slide(slide, output_path=None):
    # Initialize the Beamer document
    latex_code = "\\documentclass{beamer} \n\\begin{document}"

    # Split the slide string into pages
    pages = slide.split('[PB]')[1:]

    # Iterate through each page
    for i, page in enumerate(pages):
        tmp_list = [None, None]  # [title, content]

        page = page.strip()

        print(i, page)

        # Extract the page title and content
        title_end_index = page.index("\n") + 1
        title = page[:title_end_index].strip()
        content_end_index = page.index("[PE]")
        content = page[title_end_index:content_end_index].strip()

        # Start a new frame with the page title
        if title:
            tmp_list[0] = f"\n\\begin{{frame}}{{{title}}}\n\n"

        # Split the content into list items
        items = content.split('\n')

        p = []
        for item in items:
            if not item:
                break
            # print(item)
            if '[T][T]' in item:
                assert len(p) > 0, "Subpoint cannot be the first item in a page"
                subpoints = item.split('[T][T]')[1]
                p[-1].append(subpoints)
            else:
                if '[T]' in item:
                    point = item.split('[T]')[1]
                else:
                    point = item
                p.append([point])

        if p:
            # Add each item as a Beamer itemize element
            tmp_list[1] = "\\begin{itemize}\n"
            for point in p:
                if not point:
                    break
                tmp_list[1] += f"\\item {point[0]}\n"
                if len(point) > 1:
                    tmp_list[1] += "\\begin{itemize}\n"
                    for subpoint in point[1:]:
                        tmp_list[1] += f"\\item {subpoint}\n"
                    tmp_list[1] += "\\end{itemize}\n"
            tmp_list[1] += "\\end{itemize}\n"

        if tmp_list[0] is None and tmp_list[1] is None:
            # The page is empty, so skip it
            if i == len(pages) - 1:
                # This is the last page, so end the document instead of the frame
                latex_code += "\n\\end{document}"
            break

        tmp_list[1] += "\n\\end{frame}\n"
        # End the frame
        if i == len(pages) - 1:
            # This is the last page, so end the document instead of the frame
            tmp_list[1] += "\n\\end{document}"

        latex_code += "".join(tmp_list)

    latex_code = latex_code.replace('_', '\_').replace('&', '\&').replace('^', '\^').replace('$', '\$')
    if output_path:
        with open(output_path, 'w') as f:
            f.write(latex_code)


def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
    """
    Returns the number of tokens required to encode the given messages.
    
    source: https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions#managing-conversations
    """
    encoding = tiktoken.encoding_for_model(model)
    num_tokens = 0
    for message in messages:
        num_tokens += 4  # every message follows <im_start>{role/name}\n{content}<im_end>\n
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":  # if there's a name, the role is omitted
                num_tokens += -1  # role is always required and always 1 token
    num_tokens += 2  # every reply is primed with <im_start>assistant
    return num_tokens


def get_num_tokens(message, model="gpt-3.5-turbo-0301"):
    encoding = tiktoken.encoding_for_model(model)
    num_tokens = 0
    num_tokens += len(encoding.encode(message))
    return num_tokens


def get_paper_text_in_chunks(example, chunk_size=4000):
    paper_length = len(example['paper']['text'])

    title = '[TB] ' + example['title'] + ' [TE] '
    abstract = '[AB] ' + example['paper']['abstract'] + ' [AE] '

    sections = [' [SB] ' + head['n'] + ' ' + head['section'] + ' [SC] ' + ' '.join([example['paper']['text'][idx]['string'] for idx in range(head['start'], min(head['end'] + 1, paper_length))]) + ' [SE] ' for head in example['paper']['headers']]
    figures = [' [FB] ' + fig['caption'] + ' [FE] ' for fig in example['paper']['figures']]

    chunks = []

    temp_chunk = title + abstract
    temp_chunk_length = get_num_tokens(temp_chunk)

    for s in sections + figures:
        assert get_num_tokens(s) < chunk_size, "Section or figure is too long to fit in a chunk"
        if temp_chunk_length + get_num_tokens(s) > chunk_size:
            chunks.append(temp_chunk)
            temp_chunk = s
            temp_chunk_length = get_num_tokens(s)
        else:
            temp_chunk += s
            temp_chunk_length += get_num_tokens(s)

    if temp_chunk_length > 0:
        chunks.append(temp_chunk)

    return chunks