mmahesh873 commited on
Commit
16c16dd
·
1 Parent(s): 6bf538d

fixed app.py issues

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -40,7 +40,8 @@ st.write(""" The performance metric used is an estimation of the percentage of c
40
  with st.container():
41
  st.write(f"**Overall performance: {overall_performance}%**")
42
  # %%
43
- st.header("Fairness ratios")
 
44
  fairness_results = data_dict['Fairness results']
45
 
46
  characteristic_list = []
@@ -51,7 +52,7 @@ for key, val in fairness_results.items():
51
 
52
  ch_df = pd.DataFrame({
53
  'Characteristic': characteristic_list,
54
- 'Fairness ratio': fairness_ratio_list
55
  })
56
  st.dataframe(ch_df)
57
 
@@ -106,7 +107,7 @@ st.header("Performance, Fairness, Robustness")
106
  embedder_categories = data_dict['Embedder categories']
107
 
108
  option = st.selectbox(
109
- 'Select higher-level categorization:',
110
  list(embedder_categories.keys()))
111
 
112
 
@@ -176,7 +177,7 @@ fig_fair.update_layout(yaxis_title="Performance in %")
176
  st.plotly_chart(fig_fair, theme="streamlit", use_container_width=True)
177
  st.markdown("---")
178
 
179
-
180
 
181
  t_result = data_dict['Performance Robustness']['Embedder wise results'][option]
182
  # Embedder categories
@@ -196,6 +197,8 @@ for item in global_perturber_families:
196
  temp_header = f'Perturber family: {family_name}'
197
  # st.markdown(f'##### {temp_header}')
198
  t_pert_fig = px.line(merged_df, x="Levels", y="normalized performance", color='category')
 
 
199
  # px.line(t_pert_df_global, x="Levels", y="Performance", color='Perturbation family')
200
  t_pert_df_global_temp = t_pert_df_global[t_pert_df_global['Perturbation family'] == family_name].copy(deep=True)
201
  t_pert_df_global_temp['category'] = 'Overall'
@@ -205,4 +208,4 @@ for item in global_perturber_families:
205
 
206
  st.write(f'The following plot illustrates the normalized performance of the model across different categories for perturbation family: {family_name}.')
207
  st.plotly_chart(t_pert_fig, theme="streamlit", use_container_width=True)
208
- st.markdown("---")
 
40
  with st.container():
41
  st.write(f"**Overall performance: {overall_performance}%**")
42
  # %%
43
+ st.header("Bias ratios")
44
+ st.write('Bias ratio is defined as the ratio of the highest performance to the lowest performance among reliable categories for a characteristic.')
45
  fairness_results = data_dict['Fairness results']
46
 
47
  characteristic_list = []
 
52
 
53
  ch_df = pd.DataFrame({
54
  'Characteristic': characteristic_list,
55
+ 'Bias ratio': fairness_ratio_list
56
  })
57
  st.dataframe(ch_df)
58
 
 
107
  embedder_categories = data_dict['Embedder categories']
108
 
109
  option = st.selectbox(
110
+ 'Select higher-level categorization/characteristic:',
111
  list(embedder_categories.keys()))
112
 
113
 
 
177
  st.plotly_chart(fig_fair, theme="streamlit", use_container_width=True)
178
  st.markdown("---")
179
 
180
+ st.write('The following plots show the normalized average performance for each category of a characteristic, for each level of perturbation, starting with no perturbation. Each curve represents the normalized average performance on a category, by which we mean that we divide the average performance at every level of perturbation by the average performance without perturbation. ')
181
 
182
  t_result = data_dict['Performance Robustness']['Embedder wise results'][option]
183
  # Embedder categories
 
197
  temp_header = f'Perturber family: {family_name}'
198
  # st.markdown(f'##### {temp_header}')
199
  t_pert_fig = px.line(merged_df, x="Levels", y="normalized performance", color='category')
200
+ t_pert_fig.update_layout(yaxis_title="Normalized performance")
201
+
202
  # px.line(t_pert_df_global, x="Levels", y="Performance", color='Perturbation family')
203
  t_pert_df_global_temp = t_pert_df_global[t_pert_df_global['Perturbation family'] == family_name].copy(deep=True)
204
  t_pert_df_global_temp['category'] = 'Overall'
 
208
 
209
  st.write(f'The following plot illustrates the normalized performance of the model across different categories for perturbation family: {family_name}.')
210
  st.plotly_chart(t_pert_fig, theme="streamlit", use_container_width=True)
211
+ st.markdown("---")