Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,232 +0,0 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
import numpy as np
|
3 |
-
import tensorflow as tf
|
4 |
-
from PIL import Image
|
5 |
-
import io
|
6 |
-
import base64
|
7 |
-
import re
|
8 |
-
import joblib
|
9 |
-
import os
|
10 |
-
|
11 |
-
app = Flask(__name__)
|
12 |
-
|
13 |
-
# Ensure the "images" directory exists
|
14 |
-
IMAGE_DIR = "images"
|
15 |
-
if not os.path.exists(IMAGE_DIR):
|
16 |
-
os.makedirs(IMAGE_DIR)
|
17 |
-
|
18 |
-
# Load all models - use absolute paths for Hugging Face
|
19 |
-
MODEL_DIR = os.path.join(os.getcwd(), "models")
|
20 |
-
models = {
|
21 |
-
"cnn": tf.keras.models.load_model(os.path.join(MODEL_DIR, "mnist_cnn_model.h5")),
|
22 |
-
"svm": joblib.load(os.path.join(MODEL_DIR, "mnist_svm.pkl")),
|
23 |
-
"logistic": joblib.load(os.path.join(MODEL_DIR, "mnist_logistic_regression.pkl")),
|
24 |
-
"random_forest": joblib.load(os.path.join(MODEL_DIR, "mnist_random_forest.pkl"))
|
25 |
-
}
|
26 |
-
|
27 |
-
# [Keep your existing classification_reports, preprocess_image,
|
28 |
-
# and create_simulated_scores functions exactly as they are]
|
29 |
-
# Classification reports for each model
|
30 |
-
classification_reports = {
|
31 |
-
"cnn": """
|
32 |
-
precision recall f1-score support
|
33 |
-
0 0.99 1.00 0.99 980
|
34 |
-
1 1.00 1.00 1.00 1135
|
35 |
-
2 0.99 0.99 0.99 1032
|
36 |
-
3 0.99 1.00 0.99 1010
|
37 |
-
4 1.00 0.99 0.99 982
|
38 |
-
5 0.98 0.99 0.99 892
|
39 |
-
6 1.00 0.98 0.99 958
|
40 |
-
7 0.99 0.99 0.99 1028
|
41 |
-
8 1.00 0.99 0.99 974
|
42 |
-
9 0.99 0.99 0.99 1009
|
43 |
-
accuracy 0.99 10000
|
44 |
-
macro avg 0.99 0.99 0.99 10000
|
45 |
-
weighted avg 0.99 0.99 0.99 10000
|
46 |
-
""",
|
47 |
-
"svm": """
|
48 |
-
precision recall f1-score support
|
49 |
-
0 0.9874 0.9896 0.9885 1343
|
50 |
-
1 0.9882 0.9925 0.9903 1600
|
51 |
-
2 0.9706 0.9819 0.9762 1380
|
52 |
-
3 0.9783 0.9749 0.9766 1433
|
53 |
-
4 0.9777 0.9822 0.9800 1295
|
54 |
-
5 0.9827 0.9796 0.9811 1273
|
55 |
-
6 0.9858 0.9921 0.9889 1396
|
56 |
-
7 0.9768 0.9807 0.9788 1503
|
57 |
-
8 0.9813 0.9683 0.9748 1357
|
58 |
-
9 0.9807 0.9669 0.9738 1420
|
59 |
-
accuracy 0.9810 14000
|
60 |
-
macro avg 0.9809 0.9809 0.9809 14000
|
61 |
-
weighted avg 0.9810 0.9810 0.9810 14000
|
62 |
-
""",
|
63 |
-
"random_forest": """
|
64 |
-
precision recall f1-score support
|
65 |
-
0 0.9844 0.9866 0.9855 1343
|
66 |
-
1 0.9831 0.9831 0.9831 1600
|
67 |
-
2 0.9522 0.9674 0.9597 1380
|
68 |
-
3 0.9579 0.9532 0.9556 1433
|
69 |
-
4 0.9617 0.9699 0.9658 1295
|
70 |
-
5 0.9707 0.9631 0.9669 1273
|
71 |
-
6 0.9800 0.9828 0.9814 1396
|
72 |
-
7 0.9668 0.9681 0.9674 1503
|
73 |
-
8 0.9599 0.9528 0.9564 1357
|
74 |
-
9 0.9566 0.9465 0.9515 1420
|
75 |
-
accuracy 0.9675 14000
|
76 |
-
macro avg 0.9673 0.9674 0.9673 14000
|
77 |
-
weighted avg 0.9675 0.9675 0.9675 14000
|
78 |
-
""",
|
79 |
-
"logistic": """
|
80 |
-
precision recall f1-score support
|
81 |
-
0 0.9636 0.9650 0.9643 1343
|
82 |
-
1 0.9433 0.9675 0.9553 1600
|
83 |
-
2 0.9113 0.8935 0.9023 1380
|
84 |
-
3 0.9021 0.8939 0.8980 1433
|
85 |
-
4 0.9225 0.9290 0.9257 1295
|
86 |
-
5 0.8846 0.8790 0.8818 1273
|
87 |
-
6 0.9420 0.9534 0.9477 1396
|
88 |
-
7 0.9273 0.9421 0.9347 1503
|
89 |
-
8 0.8973 0.8696 0.8832 1357
|
90 |
-
9 0.9019 0.9000 0.9010 1420
|
91 |
-
accuracy 0.9204 14000
|
92 |
-
macro avg 0.9196 0.9193 0.9194 14000
|
93 |
-
weighted avg 0.9201 0.9204 0.9202 14000
|
94 |
-
"""
|
95 |
-
}
|
96 |
-
|
97 |
-
# Preprocess image before prediction
|
98 |
-
def preprocess_image(image, model_type):
|
99 |
-
image = image.resize((28, 28)).convert('L') # Convert to grayscale
|
100 |
-
img_array = np.array(image) / 255.0 # Normalize
|
101 |
-
|
102 |
-
if model_type == "cnn":
|
103 |
-
# CNN expects 4D tensor with channel dimension
|
104 |
-
return np.expand_dims(np.expand_dims(img_array, axis=0), axis=-1)
|
105 |
-
else:
|
106 |
-
# Other models expect flattened 1D array
|
107 |
-
return img_array.flatten().reshape(1, -1)
|
108 |
-
|
109 |
-
@app.route('/')
|
110 |
-
def home():
|
111 |
-
return jsonify({
|
112 |
-
"message": "MNIST Classifier API",
|
113 |
-
"available_models": list(models.keys()),
|
114 |
-
"endpoints": {
|
115 |
-
"/predict": "POST - Send image and model_type",
|
116 |
-
"/get_classification_report": "POST - Get model metrics"
|
117 |
-
}
|
118 |
-
})
|
119 |
-
|
120 |
-
# [Keep your existing /get_classification_report and /predict routes exactly as they are]
|
121 |
-
@app.route('/get_classification_report', methods=['POST'])
|
122 |
-
def get_classification_report():
|
123 |
-
model_type = request.json['model_type']
|
124 |
-
if model_type in classification_reports:
|
125 |
-
return jsonify({
|
126 |
-
'report': classification_reports[model_type]
|
127 |
-
})
|
128 |
-
return jsonify({'error': 'Model not found'})
|
129 |
-
|
130 |
-
@app.route('/predict', methods=['POST'])
|
131 |
-
def predict():
|
132 |
-
if request.method == 'POST':
|
133 |
-
data = request.json['image']
|
134 |
-
model_type = request.json['model_type']
|
135 |
-
|
136 |
-
img_data = re.sub('^data:image/png;base64,', '', data)
|
137 |
-
img = Image.open(io.BytesIO(base64.b64decode(img_data)))
|
138 |
-
|
139 |
-
# Save the image to "images" folder
|
140 |
-
image_path = os.path.join(IMAGE_DIR, "digit.png")
|
141 |
-
img.save(image_path)
|
142 |
-
|
143 |
-
# Preprocess image and predict
|
144 |
-
processed_image = preprocess_image(img, model_type)
|
145 |
-
|
146 |
-
if model_type in models:
|
147 |
-
model = models[model_type]
|
148 |
-
|
149 |
-
# Model-specific prediction logic
|
150 |
-
if model_type == "cnn":
|
151 |
-
# For CNN, use softmax probabilities
|
152 |
-
prediction = model.predict(processed_image)
|
153 |
-
predicted_digit = np.argmax(prediction)
|
154 |
-
confidence_scores = prediction[0].tolist()
|
155 |
-
score_type = "probability"
|
156 |
-
|
157 |
-
elif model_type == "svm":
|
158 |
-
# For SVM, use decision function distances
|
159 |
-
predicted_digit = model.predict(processed_image)[0]
|
160 |
-
|
161 |
-
# Try to get decision function scores
|
162 |
-
if hasattr(model, "decision_function") and callable(getattr(model, "decision_function")):
|
163 |
-
try:
|
164 |
-
# Get raw decision scores
|
165 |
-
decision_scores = model.decision_function(processed_image)
|
166 |
-
|
167 |
-
# One-vs-One SVMs have a different shape for decision_function output
|
168 |
-
if len(decision_scores.shape) == 2:
|
169 |
-
# This is a standard one-vs-rest SVM, shape should be (1, n_classes)
|
170 |
-
confidence_scores = decision_scores[0].tolist()
|
171 |
-
else:
|
172 |
-
# One-vs-One SVM returns pairwise comparisons
|
173 |
-
# Convert to a simplified score per class (this is an approximation)
|
174 |
-
confidence_scores = [0] * 10
|
175 |
-
for i in range(10):
|
176 |
-
# Count how many times class i wins in pairwise comparisons
|
177 |
-
confidence_scores[i] = sum(1 for score in decision_scores[0] if score > 0)
|
178 |
-
|
179 |
-
# Normalize scores to positive values for visualization
|
180 |
-
min_score = min(confidence_scores)
|
181 |
-
if min_score < 0:
|
182 |
-
confidence_scores = [score - min_score for score in confidence_scores]
|
183 |
-
|
184 |
-
score_type = "decision_distance"
|
185 |
-
except (AttributeError, NotImplementedError) as e:
|
186 |
-
print(f"Error getting decision function: {e}")
|
187 |
-
confidence_scores = create_simulated_scores(int(predicted_digit))
|
188 |
-
score_type = "simulated"
|
189 |
-
else:
|
190 |
-
# Fallback if decision_function is not available
|
191 |
-
confidence_scores = create_simulated_scores(int(predicted_digit))
|
192 |
-
score_type = "simulated"
|
193 |
-
|
194 |
-
else:
|
195 |
-
# For other models (Random Forest, Logistic Regression)
|
196 |
-
predicted_digit = model.predict(processed_image)[0]
|
197 |
-
|
198 |
-
# Try to get probability estimates
|
199 |
-
if hasattr(model, "predict_proba") and callable(getattr(model, "predict_proba")):
|
200 |
-
try:
|
201 |
-
confidence_scores = model.predict_proba(processed_image)[0].tolist()
|
202 |
-
score_type = "probability"
|
203 |
-
except (AttributeError, NotImplementedError):
|
204 |
-
confidence_scores = create_simulated_scores(int(predicted_digit))
|
205 |
-
score_type = "simulated"
|
206 |
-
else:
|
207 |
-
confidence_scores = create_simulated_scores(int(predicted_digit))
|
208 |
-
score_type = "simulated"
|
209 |
-
|
210 |
-
return jsonify({
|
211 |
-
'digit': int(predicted_digit),
|
212 |
-
'confidence_scores': confidence_scores,
|
213 |
-
'score_type': score_type
|
214 |
-
})
|
215 |
-
|
216 |
-
return jsonify({'error': 'Model not found'})
|
217 |
-
|
218 |
-
def create_simulated_scores(predicted_digit):
|
219 |
-
"""Create simulated confidence scores that sum to 1.0 with highest probability for the predicted digit."""
|
220 |
-
# Assign base probabilities
|
221 |
-
scores = [0.01] * 10 # Give each digit a small base probability
|
222 |
-
|
223 |
-
# Calculate remaining probability (should be around 0.9)
|
224 |
-
remaining = 1.0 - sum(scores)
|
225 |
-
|
226 |
-
# Assign the remaining probability to the predicted digit
|
227 |
-
scores[predicted_digit] += remaining
|
228 |
-
|
229 |
-
return scores
|
230 |
-
|
231 |
-
if __name__ == '__main__':
|
232 |
-
app.run(host='0.0.0.0', port=7860) # Hugging Face uses port 7860
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|