Spaces:
Sleeping
Sleeping
Delete logger
Browse files- logger/__init__.py +0 -1
- logger/logger.py +0 -340
logger/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
# Logger Package
|
|
|
|
logger/logger.py
DELETED
@@ -1,340 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Enhanced in-memory logging system for RAG API with detailed pipeline timing.
|
3 |
-
Since HuggingFace doesn't allow persistent file storage, logs are stored in memory.
|
4 |
-
"""
|
5 |
-
|
6 |
-
import json
|
7 |
-
import time
|
8 |
-
from datetime import datetime
|
9 |
-
from typing import List, Dict, Any, Optional
|
10 |
-
from dataclasses import dataclass, asdict, field
|
11 |
-
import threading
|
12 |
-
|
13 |
-
@dataclass
|
14 |
-
class PipelineTimings:
|
15 |
-
"""Detailed timing for each stage of the RAG pipeline."""
|
16 |
-
query_expansion_time: float = 0.0
|
17 |
-
hybrid_search_time: float = 0.0
|
18 |
-
semantic_search_time: float = 0.0
|
19 |
-
bm25_search_time: float = 0.0
|
20 |
-
score_fusion_time: float = 0.0
|
21 |
-
reranking_time: float = 0.0
|
22 |
-
context_creation_time: float = 0.0
|
23 |
-
llm_generation_time: float = 0.0
|
24 |
-
total_pipeline_time: float = 0.0
|
25 |
-
|
26 |
-
@dataclass
|
27 |
-
class LogEntry:
|
28 |
-
"""Enhanced structure for a single log entry with detailed timing."""
|
29 |
-
timestamp: str
|
30 |
-
request_id: str
|
31 |
-
document_url: str
|
32 |
-
questions: List[str]
|
33 |
-
answers: List[str]
|
34 |
-
processing_time_seconds: float
|
35 |
-
total_questions: int
|
36 |
-
status: str # 'success', 'error', 'partial'
|
37 |
-
error_message: Optional[str] = None
|
38 |
-
document_id: Optional[str] = None
|
39 |
-
was_preprocessed: bool = False
|
40 |
-
# Enhanced timing details
|
41 |
-
request_start_time: str = ""
|
42 |
-
request_end_time: str = ""
|
43 |
-
pipeline_timings: Dict[str, Any] = field(default_factory=dict)
|
44 |
-
# Per-question timings
|
45 |
-
question_timings: List[Dict[str, Any]] = field(default_factory=list)
|
46 |
-
|
47 |
-
class RAGLogger:
|
48 |
-
"""Enhanced in-memory logging system for RAG API requests with detailed pipeline timing."""
|
49 |
-
|
50 |
-
def __init__(self):
|
51 |
-
self.logs: List[LogEntry] = []
|
52 |
-
self.server_start_time = datetime.now().isoformat()
|
53 |
-
self.request_counter = 0
|
54 |
-
self._lock = threading.Lock()
|
55 |
-
# Active request tracking for timing
|
56 |
-
self._active_requests: Dict[str, Dict[str, Any]] = {}
|
57 |
-
|
58 |
-
def generate_request_id(self) -> str:
|
59 |
-
"""Generate a unique request ID."""
|
60 |
-
with self._lock:
|
61 |
-
self.request_counter += 1
|
62 |
-
return f"req_{self.request_counter:06d}"
|
63 |
-
|
64 |
-
def start_request_timing(self, request_id: str) -> None:
|
65 |
-
"""Start timing for a new request."""
|
66 |
-
self._active_requests[request_id] = {
|
67 |
-
'start_time': time.time(),
|
68 |
-
'start_timestamp': datetime.now().isoformat(),
|
69 |
-
'pipeline_stages': {},
|
70 |
-
'question_timings': []
|
71 |
-
}
|
72 |
-
|
73 |
-
def log_pipeline_stage(self, request_id: str, stage_name: str, duration: float) -> None:
|
74 |
-
"""Log the timing for a specific pipeline stage."""
|
75 |
-
if request_id in self._active_requests:
|
76 |
-
self._active_requests[request_id]['pipeline_stages'][stage_name] = {
|
77 |
-
'duration_seconds': round(duration, 4),
|
78 |
-
'timestamp': datetime.now().isoformat()
|
79 |
-
}
|
80 |
-
print(f"⏱️ [{request_id}] {stage_name}: {duration:.4f}s")
|
81 |
-
|
82 |
-
def log_question_timing(self, request_id: str, question_index: int, question: str,
|
83 |
-
answer: str, duration: float, pipeline_timings: Dict[str, float]) -> None:
|
84 |
-
"""Log timing for individual question processing."""
|
85 |
-
if request_id in self._active_requests:
|
86 |
-
question_timing = {
|
87 |
-
'question_index': question_index,
|
88 |
-
'question': question[:100] + "..." if len(question) > 100 else question,
|
89 |
-
'answer_length': len(answer),
|
90 |
-
'total_time_seconds': round(duration, 4),
|
91 |
-
'pipeline_breakdown': {k: round(v, 4) for k, v in pipeline_timings.items()},
|
92 |
-
'timestamp': datetime.now().isoformat()
|
93 |
-
}
|
94 |
-
self._active_requests[request_id]['question_timings'].append(question_timing)
|
95 |
-
|
96 |
-
# Enhanced console logging
|
97 |
-
print(f"\n❓ [{request_id}] Question {question_index + 1}: {question[:60]}...")
|
98 |
-
print(f" 📊 Processing time: {duration:.4f}s")
|
99 |
-
if pipeline_timings:
|
100 |
-
breakdown_str = " | ".join([f"{k}: {v:.4f}s" for k, v in pipeline_timings.items() if v > 0])
|
101 |
-
if breakdown_str:
|
102 |
-
print(f" ⚙️ Pipeline breakdown: {breakdown_str}")
|
103 |
-
print(f" 💬 Answer length: {len(answer)} characters")
|
104 |
-
|
105 |
-
def end_request_timing(self, request_id: str) -> Dict[str, Any]:
|
106 |
-
"""End timing for a request and return timing data."""
|
107 |
-
if request_id not in self._active_requests:
|
108 |
-
return {}
|
109 |
-
|
110 |
-
request_data = self._active_requests[request_id]
|
111 |
-
total_time = time.time() - request_data['start_time']
|
112 |
-
|
113 |
-
timing_data = {
|
114 |
-
'start_time': request_data['start_timestamp'],
|
115 |
-
'end_time': datetime.now().isoformat(),
|
116 |
-
'total_time_seconds': round(total_time, 4),
|
117 |
-
'pipeline_stages': request_data['pipeline_stages'],
|
118 |
-
'question_timings': request_data['question_timings']
|
119 |
-
}
|
120 |
-
|
121 |
-
# Cleanup
|
122 |
-
del self._active_requests[request_id]
|
123 |
-
|
124 |
-
return timing_data
|
125 |
-
|
126 |
-
def log_request(
|
127 |
-
self,
|
128 |
-
document_url: str,
|
129 |
-
questions: List[str],
|
130 |
-
answers: List[str],
|
131 |
-
processing_time: float,
|
132 |
-
status: str = "success",
|
133 |
-
error_message: Optional[str] = None,
|
134 |
-
document_id: Optional[str] = None,
|
135 |
-
was_preprocessed: bool = False,
|
136 |
-
timing_data: Optional[Dict[str, Any]] = None
|
137 |
-
) -> str:
|
138 |
-
"""
|
139 |
-
Log a RAG API request with enhanced timing information.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
document_url: URL of the document processed
|
143 |
-
questions: List of questions asked
|
144 |
-
answers: List of answers generated
|
145 |
-
processing_time: Time taken in seconds
|
146 |
-
status: Request status ('success', 'error', 'partial')
|
147 |
-
error_message: Error message if any
|
148 |
-
document_id: Generated document ID
|
149 |
-
was_preprocessed: Whether document was already processed
|
150 |
-
timing_data: Detailed timing breakdown from pipeline
|
151 |
-
|
152 |
-
Returns:
|
153 |
-
str: Request ID
|
154 |
-
"""
|
155 |
-
request_id = self.generate_request_id()
|
156 |
-
|
157 |
-
# Extract timing information
|
158 |
-
pipeline_timings = {}
|
159 |
-
question_timings = []
|
160 |
-
request_start_time = ""
|
161 |
-
request_end_time = ""
|
162 |
-
|
163 |
-
if timing_data:
|
164 |
-
request_start_time = timing_data.get('start_time', '')
|
165 |
-
request_end_time = timing_data.get('end_time', '')
|
166 |
-
pipeline_timings = timing_data.get('pipeline_stages', {})
|
167 |
-
question_timings = timing_data.get('question_timings', [])
|
168 |
-
|
169 |
-
log_entry = LogEntry(
|
170 |
-
timestamp=datetime.now().isoformat(),
|
171 |
-
request_id=request_id,
|
172 |
-
document_url=document_url,
|
173 |
-
questions=questions,
|
174 |
-
answers=answers,
|
175 |
-
processing_time_seconds=round(processing_time, 2),
|
176 |
-
total_questions=len(questions),
|
177 |
-
status=status,
|
178 |
-
error_message=error_message,
|
179 |
-
document_id=document_id,
|
180 |
-
was_preprocessed=was_preprocessed,
|
181 |
-
request_start_time=request_start_time,
|
182 |
-
request_end_time=request_end_time,
|
183 |
-
pipeline_timings=pipeline_timings,
|
184 |
-
question_timings=question_timings
|
185 |
-
)
|
186 |
-
|
187 |
-
with self._lock:
|
188 |
-
self.logs.append(log_entry)
|
189 |
-
|
190 |
-
# Enhanced console logging summary
|
191 |
-
print(f"\n📊 [{request_id}] REQUEST COMPLETED:")
|
192 |
-
print(f" 🕐 Duration: {processing_time:.2f}s")
|
193 |
-
print(f" 📄 Document: {document_url[:60]}...")
|
194 |
-
print(f" ❓ Questions processed: {len(questions)}")
|
195 |
-
print(f" ✅ Status: {status.upper()}")
|
196 |
-
|
197 |
-
if pipeline_timings:
|
198 |
-
print(f" ⚙️ Pipeline performance:")
|
199 |
-
for stage, data in pipeline_timings.items():
|
200 |
-
duration = data.get('duration_seconds', 0)
|
201 |
-
print(f" • {stage.replace('_', ' ').title()}: {duration:.4f}s")
|
202 |
-
|
203 |
-
if error_message:
|
204 |
-
print(f" ❌ Error: {error_message}")
|
205 |
-
|
206 |
-
print(f" 🆔 Request ID: {request_id}")
|
207 |
-
print(" " + "="*50)
|
208 |
-
|
209 |
-
return request_id
|
210 |
-
|
211 |
-
def get_logs(self, limit: Optional[int] = None) -> List[Dict[str, Any]]:
|
212 |
-
"""
|
213 |
-
Get all logs as a list of dictionaries.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
limit: Maximum number of logs to return (most recent first)
|
217 |
-
|
218 |
-
Returns:
|
219 |
-
List of log entries as dictionaries
|
220 |
-
"""
|
221 |
-
with self._lock:
|
222 |
-
logs_list = [asdict(log) for log in self.logs]
|
223 |
-
|
224 |
-
# Return most recent first
|
225 |
-
logs_list.reverse()
|
226 |
-
|
227 |
-
if limit:
|
228 |
-
logs_list = logs_list[:limit]
|
229 |
-
|
230 |
-
return logs_list
|
231 |
-
|
232 |
-
def get_logs_summary(self) -> Dict[str, Any]:
|
233 |
-
"""Get summary statistics of all logs."""
|
234 |
-
with self._lock:
|
235 |
-
total_requests = len(self.logs)
|
236 |
-
if total_requests == 0:
|
237 |
-
return {
|
238 |
-
"server_start_time": self.server_start_time,
|
239 |
-
"total_requests": 0,
|
240 |
-
"successful_requests": 0,
|
241 |
-
"error_requests": 0,
|
242 |
-
"average_processing_time": 0,
|
243 |
-
"total_questions_processed": 0,
|
244 |
-
"total_documents_processed": 0
|
245 |
-
}
|
246 |
-
|
247 |
-
successful_requests = len([log for log in self.logs if log.status == "success"])
|
248 |
-
error_requests = len([log for log in self.logs if log.status == "error"])
|
249 |
-
total_processing_time = sum(log.processing_time_seconds for log in self.logs)
|
250 |
-
total_questions = sum(log.total_questions for log in self.logs)
|
251 |
-
unique_documents = len(set(log.document_url for log in self.logs))
|
252 |
-
preprocessed_count = len([log for log in self.logs if log.was_preprocessed])
|
253 |
-
|
254 |
-
# Enhanced timing statistics
|
255 |
-
pipeline_times = []
|
256 |
-
question_times = []
|
257 |
-
stage_times = {'query_expansion': [], 'hybrid_search': [], 'reranking': [],
|
258 |
-
'context_creation': [], 'llm_generation': []}
|
259 |
-
|
260 |
-
for log in self.logs:
|
261 |
-
# Collect question timing data
|
262 |
-
for q_timing in log.question_timings:
|
263 |
-
question_times.append(q_timing.get('total_time_seconds', 0))
|
264 |
-
# Collect stage-specific timings
|
265 |
-
breakdown = q_timing.get('pipeline_breakdown', {})
|
266 |
-
for stage, duration in breakdown.items():
|
267 |
-
if stage in stage_times:
|
268 |
-
stage_times[stage].append(duration)
|
269 |
-
|
270 |
-
# Calculate averages for each stage
|
271 |
-
avg_stage_times = {}
|
272 |
-
for stage, times in stage_times.items():
|
273 |
-
if times:
|
274 |
-
avg_stage_times[f'avg_{stage}_time'] = round(sum(times) / len(times), 4)
|
275 |
-
avg_stage_times[f'max_{stage}_time'] = round(max(times), 4)
|
276 |
-
else:
|
277 |
-
avg_stage_times[f'avg_{stage}_time'] = 0
|
278 |
-
avg_stage_times[f'max_{stage}_time'] = 0
|
279 |
-
|
280 |
-
return {
|
281 |
-
"server_start_time": self.server_start_time,
|
282 |
-
"total_requests": total_requests,
|
283 |
-
"successful_requests": successful_requests,
|
284 |
-
"error_requests": error_requests,
|
285 |
-
"partial_requests": total_requests - successful_requests - error_requests,
|
286 |
-
"success_rate": round((successful_requests / total_requests) * 100, 2),
|
287 |
-
"average_processing_time": round(total_processing_time / total_requests, 2),
|
288 |
-
"total_questions_processed": total_questions,
|
289 |
-
"total_documents_processed": unique_documents,
|
290 |
-
"documents_already_preprocessed": preprocessed_count,
|
291 |
-
"documents_newly_processed": total_requests - preprocessed_count,
|
292 |
-
"average_question_time": round(sum(question_times) / len(question_times), 4) if question_times else 0,
|
293 |
-
"pipeline_performance": avg_stage_times
|
294 |
-
}
|
295 |
-
|
296 |
-
def export_logs(self) -> Dict[str, Any]:
|
297 |
-
"""
|
298 |
-
Export all logs in a structured format for external consumption.
|
299 |
-
|
300 |
-
Returns:
|
301 |
-
Dict containing metadata and all logs
|
302 |
-
"""
|
303 |
-
summary = self.get_logs_summary()
|
304 |
-
logs = self.get_logs()
|
305 |
-
|
306 |
-
return {
|
307 |
-
"export_timestamp": datetime.now().isoformat(),
|
308 |
-
"metadata": summary,
|
309 |
-
"logs": logs
|
310 |
-
}
|
311 |
-
|
312 |
-
def get_logs_by_document(self, document_url: str) -> List[Dict[str, Any]]:
|
313 |
-
"""Get all logs for a specific document URL."""
|
314 |
-
with self._lock:
|
315 |
-
filtered_logs = [
|
316 |
-
asdict(log) for log in self.logs
|
317 |
-
if log.document_url == document_url
|
318 |
-
]
|
319 |
-
|
320 |
-
# Return most recent first
|
321 |
-
filtered_logs.reverse()
|
322 |
-
return filtered_logs
|
323 |
-
|
324 |
-
def get_recent_logs(self, minutes: int = 60) -> List[Dict[str, Any]]:
|
325 |
-
"""Get logs from the last N minutes."""
|
326 |
-
cutoff_time = datetime.now().timestamp() - (minutes * 60)
|
327 |
-
|
328 |
-
with self._lock:
|
329 |
-
recent_logs = []
|
330 |
-
for log in self.logs:
|
331 |
-
log_time = datetime.fromisoformat(log.timestamp).timestamp()
|
332 |
-
if log_time >= cutoff_time:
|
333 |
-
recent_logs.append(asdict(log))
|
334 |
-
|
335 |
-
# Return most recent first
|
336 |
-
recent_logs.reverse()
|
337 |
-
return recent_logs
|
338 |
-
|
339 |
-
# Global logger instance
|
340 |
-
rag_logger = RAGLogger()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|