Spaces:
Sleeping
Sleeping
Update preprocessing/preprocessing_modules/modular_preprocessor.py
Browse files
preprocessing/preprocessing_modules/modular_preprocessor.py
CHANGED
@@ -1,290 +1,290 @@
|
|
1 |
-
"""
|
2 |
-
Modular Document Preprocessor
|
3 |
-
|
4 |
-
Main orchestrator class that uses all preprocessing modules to process documents.
|
5 |
-
"""
|
6 |
-
|
7 |
-
import os
|
8 |
-
import asyncio
|
9 |
-
from typing import List, Dict, Any, Union
|
10 |
-
from pathlib import Path
|
11 |
-
|
12 |
-
from config.config import OUTPUT_DIR
|
13 |
-
from .pdf_downloader import PDFDownloader
|
14 |
-
from .file_downloader import FileDownloader
|
15 |
-
from .text_extractor import TextExtractor
|
16 |
-
from .text_chunker import TextChunker
|
17 |
-
from .embedding_manager import EmbeddingManager
|
18 |
-
from .vector_storage import VectorStorage
|
19 |
-
from .metadata_manager import MetadataManager
|
20 |
-
|
21 |
-
# Import new extractors
|
22 |
-
from .docx_extractor import extract_docx
|
23 |
-
from .pptx_extractor import extract_pptx
|
24 |
-
from .xlsx_extractor import extract_xlsx
|
25 |
-
from .image_extractor import extract_image_content
|
26 |
-
|
27 |
-
|
28 |
-
class ModularDocumentPreprocessor:
|
29 |
-
"""
|
30 |
-
Modular document preprocessor that orchestrates the entire preprocessing pipeline.
|
31 |
-
|
32 |
-
This class combines all preprocessing modules to provide a clean interface
|
33 |
-
for document processing while maintaining separation of concerns.
|
34 |
-
"""
|
35 |
-
|
36 |
-
def __init__(self):
|
37 |
-
"""Initialize the modular document preprocessor."""
|
38 |
-
# Set up base database path
|
39 |
-
self.base_db_path = Path(OUTPUT_DIR).resolve()
|
40 |
-
self._ensure_base_directory()
|
41 |
-
|
42 |
-
# Initialize all modules
|
43 |
-
self.pdf_downloader = PDFDownloader() # Keep for backward compatibility
|
44 |
-
self.file_downloader = FileDownloader() # New enhanced downloader
|
45 |
-
self.text_extractor = TextExtractor()
|
46 |
-
self.text_chunker = TextChunker()
|
47 |
-
self.embedding_manager = EmbeddingManager()
|
48 |
-
self.vector_storage = VectorStorage(self.base_db_path)
|
49 |
-
self.metadata_manager = MetadataManager(self.base_db_path)
|
50 |
-
|
51 |
-
print("β
Modular Document Preprocessor initialized successfully")
|
52 |
-
|
53 |
-
def _ensure_base_directory(self):
|
54 |
-
"""Ensure the base directory exists."""
|
55 |
-
if not self.base_db_path.exists():
|
56 |
-
try:
|
57 |
-
self.base_db_path.mkdir(parents=True, exist_ok=True)
|
58 |
-
print(f"β
Created directory: {self.base_db_path}")
|
59 |
-
except PermissionError:
|
60 |
-
print(f"β οΈ Directory {self.base_db_path} should exist in production environment")
|
61 |
-
if not self.base_db_path.exists():
|
62 |
-
raise RuntimeError(f"Required directory {self.base_db_path} does not exist and cannot be created")
|
63 |
-
|
64 |
-
# Delegate metadata operations to metadata manager
|
65 |
-
def generate_doc_id(self, document_url: str) -> str:
|
66 |
-
"""Generate a unique document ID from the URL."""
|
67 |
-
return self.metadata_manager.generate_doc_id(document_url)
|
68 |
-
|
69 |
-
def is_document_processed(self, document_url: str) -> bool:
|
70 |
-
"""Check if a document has already been processed."""
|
71 |
-
return self.metadata_manager.is_document_processed(document_url)
|
72 |
-
|
73 |
-
def get_document_info(self, document_url: str) -> Dict[str, Any]:
|
74 |
-
"""Get information about a processed document."""
|
75 |
-
return self.metadata_manager.get_document_info(document_url)
|
76 |
-
|
77 |
-
def list_processed_documents(self) -> Dict[str, Dict]:
|
78 |
-
"""List all processed documents."""
|
79 |
-
return self.metadata_manager.list_processed_documents()
|
80 |
-
|
81 |
-
def get_collection_stats(self) -> Dict[str, Any]:
|
82 |
-
"""Get statistics about all collections."""
|
83 |
-
return self.metadata_manager.get_collection_stats()
|
84 |
-
|
85 |
-
async def process_document(self, document_url: str, force_reprocess: bool = False, timeout: int = 300) -> Union[str, List]:
|
86 |
-
"""
|
87 |
-
Process a single document: download, extract, chunk, embed, and store.
|
88 |
-
|
89 |
-
Args:
|
90 |
-
document_url: URL of the document (PDF, DOCX, PPTX, XLSX, images, etc.)
|
91 |
-
force_reprocess: If True, reprocess even if already processed
|
92 |
-
timeout: Download timeout in seconds (default: 300s/5min)
|
93 |
-
|
94 |
-
Returns:
|
95 |
-
str: Document ID for normal processing
|
96 |
-
List: [content, type] for special handling (oneshot, tabular, image)
|
97 |
-
"""
|
98 |
-
doc_id = self.generate_doc_id(document_url)
|
99 |
-
|
100 |
-
# Check if already processed
|
101 |
-
if not force_reprocess and self.is_document_processed(document_url):
|
102 |
-
print(f"β
Document {doc_id} already processed, skipping...")
|
103 |
-
return doc_id
|
104 |
-
|
105 |
-
print(f"π Processing document: {doc_id}")
|
106 |
-
print(f"π URL: {document_url}")
|
107 |
-
|
108 |
-
temp_file_path = None
|
109 |
-
try:
|
110 |
-
# Step 1: Download file (enhanced to handle multiple types)
|
111 |
-
temp_file_path, ext = await self.file_downloader.download_file(document_url, timeout=timeout)
|
112 |
-
|
113 |
-
if temp_file_path == 'not supported':
|
114 |
-
return ['unsupported', ext]
|
115 |
-
|
116 |
-
# Step 2: Extract text based on file type
|
117 |
-
full_text = ""
|
118 |
-
match ext:
|
119 |
-
case 'pdf':
|
120 |
-
full_text = await self.text_extractor.extract_text_from_pdf(temp_file_path)
|
121 |
-
|
122 |
-
case 'docx':
|
123 |
-
full_text = extract_docx(temp_file_path)
|
124 |
-
|
125 |
-
case 'pptx':
|
126 |
-
full_text = extract_pptx(temp_file_path)
|
127 |
-
return [full_text, 'oneshot']
|
128 |
-
|
129 |
-
case 'url':
|
130 |
-
new_context = "URL for Context: " + temp_file_path
|
131 |
-
return [new_context, 'oneshot']
|
132 |
-
|
133 |
-
case 'txt':
|
134 |
-
with open(temp_file_path, 'r', encoding='utf-8') as f:
|
135 |
-
full_text = f.read()
|
136 |
-
|
137 |
-
case 'xlsx':
|
138 |
-
full_text = extract_xlsx(temp_file_path)
|
139 |
-
# Print a short preview (10-15 chars) to verify extraction
|
140 |
-
try:
|
141 |
-
preview = ''.join(full_text.split())[:15]
|
142 |
-
if preview:
|
143 |
-
print(f"π XLSX extracted preview: {preview}")
|
144 |
-
except Exception:
|
145 |
-
pass
|
146 |
-
return [full_text, 'tabular']
|
147 |
-
|
148 |
-
case 'csv':
|
149 |
-
with open(temp_file_path, 'r', encoding='utf-8') as f:
|
150 |
-
full_text = f.read()
|
151 |
-
return [full_text, 'tabular']
|
152 |
-
|
153 |
-
case 'png' | 'jpeg' | 'jpg':
|
154 |
-
# Don't clean up image files - they'll be cleaned up by the caller
|
155 |
-
return [temp_file_path, 'image', True] # Third element indicates no cleanup needed
|
156 |
-
|
157 |
-
case _:
|
158 |
-
raise Exception(f"Unsupported file type: {ext}")
|
159 |
-
|
160 |
-
# Validate extracted text
|
161 |
-
if not self.text_extractor.validate_extracted_text(full_text):
|
162 |
-
raise Exception("No meaningful text extracted from document")
|
163 |
-
|
164 |
-
# Step 3: Create chunks
|
165 |
-
chunks = self.text_chunker.chunk_text(full_text)
|
166 |
-
|
167 |
-
# Check if document is too short for chunking
|
168 |
-
if len(chunks) <
|
169 |
-
print(f"Only {len(chunks)} chunks formed, going for oneshot.")
|
170 |
-
return [full_text, 'oneshot']
|
171 |
-
|
172 |
-
if not chunks:
|
173 |
-
raise Exception("No chunks created from text")
|
174 |
-
|
175 |
-
# Log chunk statistics
|
176 |
-
chunk_stats = self.text_chunker.get_chunk_stats(chunks)
|
177 |
-
print(f"π Chunk Statistics: {chunk_stats['total_chunks']} chunks, "
|
178 |
-
f"avg size: {chunk_stats['avg_chunk_size']:.0f} chars")
|
179 |
-
|
180 |
-
# Step 4: Create embeddings
|
181 |
-
embeddings = await self.embedding_manager.create_embeddings(chunks)
|
182 |
-
|
183 |
-
# Validate embeddings
|
184 |
-
if not self.embedding_manager.validate_embeddings(embeddings, len(chunks)):
|
185 |
-
raise Exception("Invalid embeddings generated")
|
186 |
-
|
187 |
-
# Step 5: Store in Qdrant
|
188 |
-
await self.vector_storage.store_in_qdrant(chunks, embeddings, doc_id)
|
189 |
-
|
190 |
-
# Step 6: Save metadata
|
191 |
-
self.metadata_manager.save_document_metadata(chunks, doc_id, document_url)
|
192 |
-
|
193 |
-
print(f"β
Document {doc_id} processed successfully: {len(chunks)} chunks")
|
194 |
-
return doc_id
|
195 |
-
|
196 |
-
except Exception as e:
|
197 |
-
print(f"β Error processing document {doc_id}: {str(e)}")
|
198 |
-
raise
|
199 |
-
finally:
|
200 |
-
# Clean up temporary file - but NOT for images since they need the file path
|
201 |
-
if temp_file_path and ext not in ['png', 'jpeg', 'jpg']:
|
202 |
-
self.file_downloader.cleanup_temp_file(temp_file_path)
|
203 |
-
|
204 |
-
async def process_multiple_documents(self, document_urls: List[str], force_reprocess: bool = False) -> Dict[str, str]:
|
205 |
-
"""
|
206 |
-
Process multiple documents concurrently.
|
207 |
-
|
208 |
-
Args:
|
209 |
-
document_urls: List of PDF URLs
|
210 |
-
force_reprocess: If True, reprocess even if already processed
|
211 |
-
|
212 |
-
Returns:
|
213 |
-
Dict[str, str]: Mapping of URLs to document IDs
|
214 |
-
"""
|
215 |
-
print(f"π Processing {len(document_urls)} documents...")
|
216 |
-
|
217 |
-
results = {}
|
218 |
-
|
219 |
-
# Process documents concurrently (with limited concurrency)
|
220 |
-
semaphore = asyncio.Semaphore(3) # Limit to 3 concurrent downloads
|
221 |
-
|
222 |
-
async def process_single(url):
|
223 |
-
async with semaphore:
|
224 |
-
try:
|
225 |
-
doc_id = await self.process_document(url, force_reprocess)
|
226 |
-
return url, doc_id
|
227 |
-
except Exception as e:
|
228 |
-
print(f"β Failed to process {url}: {str(e)}")
|
229 |
-
return url, None
|
230 |
-
|
231 |
-
tasks = [process_single(url) for url in document_urls]
|
232 |
-
completed_tasks = await asyncio.gather(*tasks, return_exceptions=True)
|
233 |
-
|
234 |
-
for result in completed_tasks:
|
235 |
-
if isinstance(result, tuple):
|
236 |
-
url, doc_id = result
|
237 |
-
if doc_id:
|
238 |
-
results[url] = doc_id
|
239 |
-
|
240 |
-
print(f"β
Successfully processed {len(results)}/{len(document_urls)} documents")
|
241 |
-
return results
|
242 |
-
|
243 |
-
def get_system_info(self) -> Dict[str, Any]:
|
244 |
-
"""
|
245 |
-
Get information about the preprocessing system.
|
246 |
-
|
247 |
-
Returns:
|
248 |
-
Dict[str, Any]: System information
|
249 |
-
"""
|
250 |
-
return {
|
251 |
-
"base_db_path": str(self.base_db_path),
|
252 |
-
"embedding_model": self.embedding_manager.get_model_info(),
|
253 |
-
"text_chunker_config": {
|
254 |
-
"chunk_size": self.text_chunker.chunk_size,
|
255 |
-
"chunk_overlap": self.text_chunker.chunk_overlap
|
256 |
-
},
|
257 |
-
"processed_documents_registry": self.metadata_manager.get_registry_path(),
|
258 |
-
"collection_stats": self.get_collection_stats()
|
259 |
-
}
|
260 |
-
|
261 |
-
def cleanup_document(self, document_url: str) -> bool:
|
262 |
-
"""
|
263 |
-
Remove all data for a specific document.
|
264 |
-
|
265 |
-
Args:
|
266 |
-
document_url: URL of the document to clean up
|
267 |
-
|
268 |
-
Returns:
|
269 |
-
bool: True if successfully cleaned up
|
270 |
-
"""
|
271 |
-
doc_id = self.generate_doc_id(document_url)
|
272 |
-
|
273 |
-
try:
|
274 |
-
# Remove vector storage
|
275 |
-
vector_removed = self.vector_storage.delete_collection(doc_id)
|
276 |
-
|
277 |
-
# Remove metadata
|
278 |
-
metadata_removed = self.metadata_manager.remove_document_metadata(doc_id)
|
279 |
-
|
280 |
-
success = vector_removed and metadata_removed
|
281 |
-
if success:
|
282 |
-
print(f"β
Successfully cleaned up document {doc_id}")
|
283 |
-
else:
|
284 |
-
print(f"β οΈ Partial cleanup for document {doc_id}")
|
285 |
-
|
286 |
-
return success
|
287 |
-
|
288 |
-
except Exception as e:
|
289 |
-
print(f"β Error cleaning up document {doc_id}: {e}")
|
290 |
-
return False
|
|
|
1 |
+
"""
|
2 |
+
Modular Document Preprocessor
|
3 |
+
|
4 |
+
Main orchestrator class that uses all preprocessing modules to process documents.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import asyncio
|
9 |
+
from typing import List, Dict, Any, Union
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
from config.config import OUTPUT_DIR
|
13 |
+
from .pdf_downloader import PDFDownloader
|
14 |
+
from .file_downloader import FileDownloader
|
15 |
+
from .text_extractor import TextExtractor
|
16 |
+
from .text_chunker import TextChunker
|
17 |
+
from .embedding_manager import EmbeddingManager
|
18 |
+
from .vector_storage import VectorStorage
|
19 |
+
from .metadata_manager import MetadataManager
|
20 |
+
|
21 |
+
# Import new extractors
|
22 |
+
from .docx_extractor import extract_docx
|
23 |
+
from .pptx_extractor import extract_pptx
|
24 |
+
from .xlsx_extractor import extract_xlsx
|
25 |
+
from .image_extractor import extract_image_content
|
26 |
+
|
27 |
+
|
28 |
+
class ModularDocumentPreprocessor:
|
29 |
+
"""
|
30 |
+
Modular document preprocessor that orchestrates the entire preprocessing pipeline.
|
31 |
+
|
32 |
+
This class combines all preprocessing modules to provide a clean interface
|
33 |
+
for document processing while maintaining separation of concerns.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self):
|
37 |
+
"""Initialize the modular document preprocessor."""
|
38 |
+
# Set up base database path
|
39 |
+
self.base_db_path = Path(OUTPUT_DIR).resolve()
|
40 |
+
self._ensure_base_directory()
|
41 |
+
|
42 |
+
# Initialize all modules
|
43 |
+
self.pdf_downloader = PDFDownloader() # Keep for backward compatibility
|
44 |
+
self.file_downloader = FileDownloader() # New enhanced downloader
|
45 |
+
self.text_extractor = TextExtractor()
|
46 |
+
self.text_chunker = TextChunker()
|
47 |
+
self.embedding_manager = EmbeddingManager()
|
48 |
+
self.vector_storage = VectorStorage(self.base_db_path)
|
49 |
+
self.metadata_manager = MetadataManager(self.base_db_path)
|
50 |
+
|
51 |
+
print("β
Modular Document Preprocessor initialized successfully")
|
52 |
+
|
53 |
+
def _ensure_base_directory(self):
|
54 |
+
"""Ensure the base directory exists."""
|
55 |
+
if not self.base_db_path.exists():
|
56 |
+
try:
|
57 |
+
self.base_db_path.mkdir(parents=True, exist_ok=True)
|
58 |
+
print(f"β
Created directory: {self.base_db_path}")
|
59 |
+
except PermissionError:
|
60 |
+
print(f"β οΈ Directory {self.base_db_path} should exist in production environment")
|
61 |
+
if not self.base_db_path.exists():
|
62 |
+
raise RuntimeError(f"Required directory {self.base_db_path} does not exist and cannot be created")
|
63 |
+
|
64 |
+
# Delegate metadata operations to metadata manager
|
65 |
+
def generate_doc_id(self, document_url: str) -> str:
|
66 |
+
"""Generate a unique document ID from the URL."""
|
67 |
+
return self.metadata_manager.generate_doc_id(document_url)
|
68 |
+
|
69 |
+
def is_document_processed(self, document_url: str) -> bool:
|
70 |
+
"""Check if a document has already been processed."""
|
71 |
+
return self.metadata_manager.is_document_processed(document_url)
|
72 |
+
|
73 |
+
def get_document_info(self, document_url: str) -> Dict[str, Any]:
|
74 |
+
"""Get information about a processed document."""
|
75 |
+
return self.metadata_manager.get_document_info(document_url)
|
76 |
+
|
77 |
+
def list_processed_documents(self) -> Dict[str, Dict]:
|
78 |
+
"""List all processed documents."""
|
79 |
+
return self.metadata_manager.list_processed_documents()
|
80 |
+
|
81 |
+
def get_collection_stats(self) -> Dict[str, Any]:
|
82 |
+
"""Get statistics about all collections."""
|
83 |
+
return self.metadata_manager.get_collection_stats()
|
84 |
+
|
85 |
+
async def process_document(self, document_url: str, force_reprocess: bool = False, timeout: int = 300) -> Union[str, List]:
|
86 |
+
"""
|
87 |
+
Process a single document: download, extract, chunk, embed, and store.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
document_url: URL of the document (PDF, DOCX, PPTX, XLSX, images, etc.)
|
91 |
+
force_reprocess: If True, reprocess even if already processed
|
92 |
+
timeout: Download timeout in seconds (default: 300s/5min)
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
str: Document ID for normal processing
|
96 |
+
List: [content, type] for special handling (oneshot, tabular, image)
|
97 |
+
"""
|
98 |
+
doc_id = self.generate_doc_id(document_url)
|
99 |
+
|
100 |
+
# Check if already processed
|
101 |
+
if not force_reprocess and self.is_document_processed(document_url):
|
102 |
+
print(f"β
Document {doc_id} already processed, skipping...")
|
103 |
+
return doc_id
|
104 |
+
|
105 |
+
print(f"π Processing document: {doc_id}")
|
106 |
+
print(f"π URL: {document_url}")
|
107 |
+
|
108 |
+
temp_file_path = None
|
109 |
+
try:
|
110 |
+
# Step 1: Download file (enhanced to handle multiple types)
|
111 |
+
temp_file_path, ext = await self.file_downloader.download_file(document_url, timeout=timeout)
|
112 |
+
|
113 |
+
if temp_file_path == 'not supported':
|
114 |
+
return ['unsupported', ext]
|
115 |
+
|
116 |
+
# Step 2: Extract text based on file type
|
117 |
+
full_text = ""
|
118 |
+
match ext:
|
119 |
+
case 'pdf':
|
120 |
+
full_text = await self.text_extractor.extract_text_from_pdf(temp_file_path)
|
121 |
+
|
122 |
+
case 'docx':
|
123 |
+
full_text = extract_docx(temp_file_path)
|
124 |
+
|
125 |
+
case 'pptx':
|
126 |
+
full_text = extract_pptx(temp_file_path)
|
127 |
+
return [full_text, 'oneshot']
|
128 |
+
|
129 |
+
case 'url':
|
130 |
+
new_context = "URL for Context: " + temp_file_path
|
131 |
+
return [new_context, 'oneshot']
|
132 |
+
|
133 |
+
case 'txt':
|
134 |
+
with open(temp_file_path, 'r', encoding='utf-8') as f:
|
135 |
+
full_text = f.read()
|
136 |
+
|
137 |
+
case 'xlsx':
|
138 |
+
full_text = extract_xlsx(temp_file_path)
|
139 |
+
# Print a short preview (10-15 chars) to verify extraction
|
140 |
+
try:
|
141 |
+
preview = ''.join(full_text.split())[:15]
|
142 |
+
if preview:
|
143 |
+
print(f"π XLSX extracted preview: {preview}")
|
144 |
+
except Exception:
|
145 |
+
pass
|
146 |
+
return [full_text, 'tabular']
|
147 |
+
|
148 |
+
case 'csv':
|
149 |
+
with open(temp_file_path, 'r', encoding='utf-8') as f:
|
150 |
+
full_text = f.read()
|
151 |
+
return [full_text, 'tabular']
|
152 |
+
|
153 |
+
case 'png' | 'jpeg' | 'jpg':
|
154 |
+
# Don't clean up image files - they'll be cleaned up by the caller
|
155 |
+
return [temp_file_path, 'image', True] # Third element indicates no cleanup needed
|
156 |
+
|
157 |
+
case _:
|
158 |
+
raise Exception(f"Unsupported file type: {ext}")
|
159 |
+
|
160 |
+
# Validate extracted text
|
161 |
+
if not self.text_extractor.validate_extracted_text(full_text):
|
162 |
+
raise Exception("No meaningful text extracted from document")
|
163 |
+
|
164 |
+
# Step 3: Create chunks
|
165 |
+
chunks = self.text_chunker.chunk_text(full_text)
|
166 |
+
|
167 |
+
# Check if document is too short for chunking
|
168 |
+
if len(chunks) < 5:
|
169 |
+
print(f"Only {len(chunks)} chunks formed, going for oneshot.")
|
170 |
+
return [full_text, 'oneshot']
|
171 |
+
|
172 |
+
if not chunks:
|
173 |
+
raise Exception("No chunks created from text")
|
174 |
+
|
175 |
+
# Log chunk statistics
|
176 |
+
chunk_stats = self.text_chunker.get_chunk_stats(chunks)
|
177 |
+
print(f"π Chunk Statistics: {chunk_stats['total_chunks']} chunks, "
|
178 |
+
f"avg size: {chunk_stats['avg_chunk_size']:.0f} chars")
|
179 |
+
|
180 |
+
# Step 4: Create embeddings
|
181 |
+
embeddings = await self.embedding_manager.create_embeddings(chunks)
|
182 |
+
|
183 |
+
# Validate embeddings
|
184 |
+
if not self.embedding_manager.validate_embeddings(embeddings, len(chunks)):
|
185 |
+
raise Exception("Invalid embeddings generated")
|
186 |
+
|
187 |
+
# Step 5: Store in Qdrant
|
188 |
+
await self.vector_storage.store_in_qdrant(chunks, embeddings, doc_id)
|
189 |
+
|
190 |
+
# Step 6: Save metadata
|
191 |
+
self.metadata_manager.save_document_metadata(chunks, doc_id, document_url)
|
192 |
+
|
193 |
+
print(f"β
Document {doc_id} processed successfully: {len(chunks)} chunks")
|
194 |
+
return doc_id
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
print(f"β Error processing document {doc_id}: {str(e)}")
|
198 |
+
raise
|
199 |
+
finally:
|
200 |
+
# Clean up temporary file - but NOT for images since they need the file path
|
201 |
+
if temp_file_path and ext not in ['png', 'jpeg', 'jpg']:
|
202 |
+
self.file_downloader.cleanup_temp_file(temp_file_path)
|
203 |
+
|
204 |
+
async def process_multiple_documents(self, document_urls: List[str], force_reprocess: bool = False) -> Dict[str, str]:
|
205 |
+
"""
|
206 |
+
Process multiple documents concurrently.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
document_urls: List of PDF URLs
|
210 |
+
force_reprocess: If True, reprocess even if already processed
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
Dict[str, str]: Mapping of URLs to document IDs
|
214 |
+
"""
|
215 |
+
print(f"π Processing {len(document_urls)} documents...")
|
216 |
+
|
217 |
+
results = {}
|
218 |
+
|
219 |
+
# Process documents concurrently (with limited concurrency)
|
220 |
+
semaphore = asyncio.Semaphore(3) # Limit to 3 concurrent downloads
|
221 |
+
|
222 |
+
async def process_single(url):
|
223 |
+
async with semaphore:
|
224 |
+
try:
|
225 |
+
doc_id = await self.process_document(url, force_reprocess)
|
226 |
+
return url, doc_id
|
227 |
+
except Exception as e:
|
228 |
+
print(f"β Failed to process {url}: {str(e)}")
|
229 |
+
return url, None
|
230 |
+
|
231 |
+
tasks = [process_single(url) for url in document_urls]
|
232 |
+
completed_tasks = await asyncio.gather(*tasks, return_exceptions=True)
|
233 |
+
|
234 |
+
for result in completed_tasks:
|
235 |
+
if isinstance(result, tuple):
|
236 |
+
url, doc_id = result
|
237 |
+
if doc_id:
|
238 |
+
results[url] = doc_id
|
239 |
+
|
240 |
+
print(f"β
Successfully processed {len(results)}/{len(document_urls)} documents")
|
241 |
+
return results
|
242 |
+
|
243 |
+
def get_system_info(self) -> Dict[str, Any]:
|
244 |
+
"""
|
245 |
+
Get information about the preprocessing system.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
Dict[str, Any]: System information
|
249 |
+
"""
|
250 |
+
return {
|
251 |
+
"base_db_path": str(self.base_db_path),
|
252 |
+
"embedding_model": self.embedding_manager.get_model_info(),
|
253 |
+
"text_chunker_config": {
|
254 |
+
"chunk_size": self.text_chunker.chunk_size,
|
255 |
+
"chunk_overlap": self.text_chunker.chunk_overlap
|
256 |
+
},
|
257 |
+
"processed_documents_registry": self.metadata_manager.get_registry_path(),
|
258 |
+
"collection_stats": self.get_collection_stats()
|
259 |
+
}
|
260 |
+
|
261 |
+
def cleanup_document(self, document_url: str) -> bool:
|
262 |
+
"""
|
263 |
+
Remove all data for a specific document.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
document_url: URL of the document to clean up
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
bool: True if successfully cleaned up
|
270 |
+
"""
|
271 |
+
doc_id = self.generate_doc_id(document_url)
|
272 |
+
|
273 |
+
try:
|
274 |
+
# Remove vector storage
|
275 |
+
vector_removed = self.vector_storage.delete_collection(doc_id)
|
276 |
+
|
277 |
+
# Remove metadata
|
278 |
+
metadata_removed = self.metadata_manager.remove_document_metadata(doc_id)
|
279 |
+
|
280 |
+
success = vector_removed and metadata_removed
|
281 |
+
if success:
|
282 |
+
print(f"β
Successfully cleaned up document {doc_id}")
|
283 |
+
else:
|
284 |
+
print(f"β οΈ Partial cleanup for document {doc_id}")
|
285 |
+
|
286 |
+
return success
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
print(f"β Error cleaning up document {doc_id}: {e}")
|
290 |
+
return False
|